


Fields

Definition Field

A field is a set If together with binary operations
addition multiplication
#Fx If -> IF #x IF -> IF

(x , b) + x + B ( , B) + 23

satisfying the following axioms

Commutativity : VG
, BEF,

x + 3 = 3+2 <B = B

Associativity : Va
, B ,
EF

,

a + (b + r) = (x+ 3) + r a(pr) = (xp))

Identity elements : 10
,
1EFF

,
0F1 such that for all If,

2+ 0 = x 21 =2

Inverses : VLEFF
,
I-deF such that

n + (-x) = 0

VaeF
,
I delF such that

2x = 1

Distributivity : Va
, B ,
rElk

,
we have

a(p+u) = 2B + 22

Example R and I are fields.

xEFF = x is a scalar.

# is the field of scalars

DEF" => 2 is a vector

#" is the field of vectors



Linear Algebra
· IR"= ((x

,
. .

.,
sun) s

, . . ., an EIR3

·

"

= ((x
, . . .,

sun)
, . . ., an]

· "Where # is a field (abstract algebra
Example of solving linear system of equations
Consider the following system of equations

1) 8x - x2 + 2xz + xy = 1

2) -x + xz + 0 + xy = 0

We can write it in matrix form

( 8 i)(ii) = (i)

we now eliminate s using second vow : gaussian elimination

VI

S 3x
- xz + 2xj + 04

= 1

=>
VI S

3x
,

-x2 + 2xz + 2
4

= 1 (1)

v2 -x +x + 0 + x4 = 0 V
, +3020 +2x + 2xy + 4x4 = 1 (* 2)

=> From (* 2)

xz= 1
-

xy
-

2x4

=> substituting into first (* 1)

3x - (( - xy - 2x4) + 2xz + x4 = 1

=> x = +(7 - 3xy -3x4) = +
- xy -34

Therefore the solution is

x = +
- xy -34

s = y - xy -

24



Writing in vector form :

(
- xy - x4

I- xy - 264(ii) = Sz

34 34

Note : Properties of vectors (can be extended to n-dimensions)

1)(b) + (a) = (a)

2)6(a) + B(a) = (2) + (a) = (I)
Therefore another way of writing the solutions is

"2

(i) '12 I + (2) + Go-

O

j j34
n me

Remarks :
() (*)

1) There are 2 free variables in the solution

number of free variables = number of variables - number of independant
equations

a



The homogeneous system of equations is

3x - %2 + 2xy +
4

= 0 O on RHS of U1
,

v23
- x +x + 0 + 24 = 0

or (= 8 i)(ii) = (8)
x4

General system of linear equations
We can write a general system of p linear equations in n unknowns as

A
, x

,
+ .. .. + A

,nan = y ,

: : (* 1 . 1)

Apix ,
+.. . + Apron =

yp

This can also be written as

= · =() = (i)
Ax = y DEFY yeAP (* 1 . 2)

Note : Some system of equations of the form (* 1 . 1) may not have solutions.

For example

E x,
+ xz= 0

S + S= 0

solution is obviously empty

The solution set to (* 1
. 2) is

s = ExF :Ax = y}



LINEAR COMBINATION AND LINEAR SUBSPACES
The first and most crucial property is how solution sets behaves for homogeneous
equations
Linear Combination

Definition Linear Combination

-nGiven V, ...,
Yell and 41

, CgEIF ,
then

q ...,

4,4 + .. . +Gqq -z ajuj-
j = 1

is called a linear combination of Y, ... In

Example : In13
,
the vector (0

,
1

, 0) is a linear combination of vectors

(8) = 2(-2) + ( )(=4)
Supspaces

DefinitionSubspaces
A subset SEF is called a subspace (or linear subspace) of I if
(s) S + &

(52) &ES

(53) VV, . . ., NgtS ,
a

,
v

,
+... . + AqIgES (closed under linear combination

Here
,
8 = 1 - 1 VVES SF => S is a proper subspace

Examples : Examples of subspaces
1) F* " and I is a subspace
2) [83[F and 284 is a subspace
3) So = &(a , b)#2 a + b = 04[#2 is a subspace as

(b) . (a) So E atb = 0

c+ d = 0

= x(a+ b) + p(c+d) = 0



<(b) + B(a) = (a+)
= (a + pc +(b + pd = c(a+ b) + p(c+a)

= 0

=><(g) + B()eSo
4) S

,
= ((x , 3) ER : x+x = 13 is not a subspace
Since 8 = 10

, 0) ES,

5) S : = [(a ,
b) < F2 a- b2= 03

Here 0 = (0 , 0) ES2

But not a subspace because it is not closed under linear combination

For example take

u = (1
,

- 1) ESg and V = (1 , 1) ES
,
but

u + 1 = (2
, 0)ES

Geometry of subspace
xb

Take So :

a+ b = 0 = b = - a

45%
>

a

Take S1 :
↑x2

x, + xy =1 => x = 1 - x
,

>
S

,

Take S2 :

↑
b

b = a

b = - a

a- b2 = (a - b)(a+ b) = 0

>
a

union of curves

b = a b = - a
I

z -



Notation :

·

Op is the 0 vector with p dimensions

· On is the 0 vector with n dimensions

Consider the generalised linear system

:

A
,
x

,
+....

Aimin= A2 = 1 ,
A =()/ :

Ap ,
Sc

,
+ .. . . + Apr>n

=

Yp

Theorem

The set of solutions

S = [xEIF" Ad = yY
to

ofM
Linear system As = y of pequations ina variables is a linear subspace

#
y = &p (linear system is homogeneous

Proof :

(E) : Suppose y =Op

Then indeed In is a solution to Ac = Op as

Aln= Op

So On is in solution set &ES

Further let Y, ..., Eq be solutions to Az =

y ,

i

. e. All = 0, ..., Arg=
Let <, ..; CgEF .

Then we check that

A(G
,
y, + ... + xq(q) = Op

A(G
,
V 1 + .. . + (q(q) = (Ay + ... + GqAXq = Up

=> <Y +... - + qq is a solution to As = Op



#: Suppose that the set of solutions to Az =y form a subspace
=> Ones is a solution

But then Aln = Op = - => y
=@

*

Example :

1) Let A = (61 ,) -
= (8)

The linear system Asay is then

(d)(i) = (%)

=> [x + x = 0 -> defines plane in 54 , sh as sy= 0

6 + Cy = 0 -> defines plane in s , sy as x = 0

↳ intersection of planes => form a line

solution:

x( = -xz = xy

In vector form

s =&(i) scR] = x( )
This is a vector equation of a line with s as a parameter

2) Now consider same system with general y

(di (i) = (i) =E
solutions :

The general solution can be written as

x = y2
- xy , s = y ,

-xz = x = y ,
-

yz + xs

S : free parameter



Writing solution in vector form

(2) =(D) = (2) + x() + solution to homogeneous parti

↳ shift from origin
Vector equation of line with a shift from origin .

solution of form : particular solution + homogeneous solution

Theorem

Let Ac =

g be a linear system of pequations, n variables.

Then its solutions S' = Eee#" As = g] are of form
5 = &W + 6 Aw = Up ,

Ado = y3
is "

homogeneous particular solutionsolution

In other terms
, Ve such that Acto-y,

s = (w +x Aw =03
i . e. S =S

Proof : Using mutual containment
,
1) SES'

,
2)5E

Let s be the solution set

1) SES'

A (w +20) = Aw + A2 = &p+ y = 7

2) seS

Let YES' be a solution. Then by definition

Av = y => A(l
- 2) = Al - Aso

= y
- Y

=

So 1-2 is a solution to A = 0

So define 1 = So+ (1 - 10) = No tw
·



LINEAR INDEPENDENCE, BASES, DIMENSIONS

Example : Not every linear system has a solution for all 7. . For example
Al) = Y

where
A = (g) x = (i) =(

The linear equations are then

34 + sy + xy = 0
y

= 0
,

0 = 1

This is NEVER true so solution set is empty , s +d

Linear Dependance/Independence

Definition Linear dependence
V, , ...,

V EFF" is linearly dependant if (x ,
,

.
. .

, <q) e * 310, ..., 033 s . t
-q

6
,
+ .. . + qq = G

Otherwise
,

we say VI
, ..., Vg are linearly independant

Definition Linear independence

Y
, ..., Yq are linearly independent if

G
,
h + .. . + q(a = 0 = 4 = 0....., dq

= 0

The idea is linear dependence means one of these vectors can be written as a

linear combination of others

For example since 610,

Y = + (22 +... + (qkq)

Remark : Any collection containing & is a linearly independent collection

&, Ye, ...., Yq is a linearly independant collection

8 . 1 + 0k +... + Og = 8 ,
where

< = 1
, 42= 0

, ...., dq= 0



Example :

1) S =213" with 10 is a linearly independent

2. =0 = 0

2) #" : el , ..., en (standard basis)

a = (b) ,
e =(i) ...... en = ()

System 21 ...; In is linearly independant

44 +... + Gen=) =0
,
V

3)u = (2) = = (7) in (2

- in + 1 = - i(i) + (z) = (i) + (i) = 0

=> linearly dependant

4) we =(2)k = (i)
< Bel , (az + Puz = (8) = (4) + (i ) = ( %)

=> (1) = (8)
=> [I

gaussian elimination
=>S2iP
=> B = 0

,
< = 0 only solution

Therefore linearly independant



Spans
Definition Span

Let &<#" be a non-empty collection of vectors. E = [F, . .... In

The span of G denoted

Sp(e)
is the set of all linear combination of E

Sp(G) = [utFu = 2
, k + .... + [In for some LieF,

viES]

By convention,
Sp(q) = [04

Remark :

i) We always have S[Sp(s) - F

ii) I may be infinite or finite but Sp(G) consists of linear combination of a

finitely many terms

Lemma

For
any GCF", EFO,

Sp(G) is a subspace of F

In fact
, sp(G) is the sudest subspace of #" containing ,

i
. e.

if JEFF" is any subspace with 635
, then Sp(a) Es

Proof : Take any collection of vectors

Vl
.
..., In where KEF" ,

icIin1

Let C = Ex, . . .

, un]

Then the span is

sp(G) = [GV 1 +... + EnIn XiEF
,
LitGY

clearly &ESp(G) when <i = 0 Vic 11 , n1

We need to show Sp(G) is closed under linear combinations.

Suppose a
,
be Sp(G) . By definition of span,



a = L
, X + ... t EnYn

b = B ,
V + .... Bnn

Then

x a + mb = x( , k + ... + (nYn) + m(B ,
y + .... Bn(n)

= (xx , +MB ,)y + .. .. + (x(n +MBn)In
=> Xa +MbeSp(G) as it is a linear combination and by definition of span.

Finally we need to show that SpCG) is the smallest subspace

we have shown thatSp(G) is a subspace and pretty clear that

Viesp(e) Viel1 , n1 since Vi = 0 . v , +.. .. + 1 kit Ovit I ... On

Suppose M is smallest subspace containing V,..., In .

We show that Sp(G) = M

1)VitSp(G) but M is the smallest subspace containing V , ..., In

=> M = Sp(a)
=

N
2) Suppose ViEM for 1Ein = <

, 1 +... nUEM V(1
, ..., In) Ell defn of

subspace
=> <V+... UnEsp(G) defn of Span

=> Sp(a) = M

By mutual inclusion,

M = Sp(q) #

For any subspace SCF" , we saya spans s if

Sp(G) = J

andG is called the spanning set for s or J is spanned by a



Example
1) F ; a = (b) ,

=2 =)y)
sp(1 ,

(2) = (xe + Bezx , Be /F3

=

(()(BCI) = 3) Fx =0
Now consider Sp(e ,

e2
,
a)

, a = (1 ,
1
, 0).

Since = 21 + 22
,
it is clear that

Sp(( ,
(2

,
4) = (p(q ,

(2)

Further, sincea = -21 and 82 = -21 ,

Sp(( ,
(2

,
4) = (p(q ,

1) = (p(2z ,
1)

2) #3 ; define 1 = (1
,

1
, 1) then E3 = 11-21-22 so

-p(( ,
(2

,
() = Sp(( , (2) = #3

Example

1) (R2, v = ( 3 ) · z
= (2) · Es =10)

Questions

a) Is it a linearly dependant system
2

b) Is sp(11 ,
Y

,
(s) = IR

Answer

1)2k + 3(2 + V = (8) = c)) + 4)-2) + v(0) = (8)
=>(1518) = (8)

=> B=

- 2 +qx + u = 0 = u=E



Therefore we get
x = -

z

B=

8 : free parameter

Since UFO,
= X

, B #0 => linearly dependent

2) <X + BVz + Us = (3) where (3) E

inhomogeneous system
We get

3x - 2B + 0 = x

- x +Sp + u = y x3
32-2B =x gaussian elimination

- 74 + 3r = x + 3y

x = +x + z4
=> spans IP

B = B (free parameter)
u =

+x +y + 53



Basis

Definition Basis

Let S&F" be a non-trivial 5503 subspace of If,
A collection B = SV1, ..., Va] &S forms a basis if

2) V, . . ., Ig is linearly independent
ii) sp(1 , ..., (q) = S

By definition,

basis of 50% is &

Lemma

Let SEF" be a subspace with an ordered basis (1, ..., q) = 3

Then VueS can be uniquely written in form

u = x , V, + .. . + Xqq

Proof :

B is a basis so sp(B) = S.

Thus VUES
,
Ad, ...,LgEF such that

u = <
, 1 ,

+ .. . +2qkq

Let B, , ..., BqE such that

u = B, y + ... + Bqq

Then

u = <
, (1 ,

+ .. . + (qkq = B, y + ... + Bqq

E(4 - B ,(( +.... + kq- q)Xq=

But (X1 ,
.

., (g) is a basis so V
, ... Vq is linearly independent

= x = B, .
.

., da= Bq

=> (, ..., <q) is unique *



Example :

:) IF" ; el , ..., en (standard basis)

a = (b) ,
e =(i) ...... en = ()

checked lecture that el ...., In linearly independent

↓ Gene so spe

Thus e, . . ., en is a basis

ii) y = ( , ) = y + .. + 2n ( = (i) = e + ... + 2n (z = (a) = est ...+

:

.... =()
This forms a basis

Assume B+... + Brin = 0 = p , ) , ) + Pz(i) + + Pn() = e

=> ()() = (
Therefore we have system of equations
17 BI = 0 => BI= 0

&+
= 0 = P1 + Bz = 0 and B1= 0 => By= 0

:
n B ,

+ P2t + Bn = 0 => B ,
+ .... + Br= 0 and B, ,

.

...
n - =

0 => Bn= 0

Therefore (B, . -

/ Bn) = (0
, . ., 0) => linearly independent



showing this spans IF", for any

)
Lets try to find B,, .... Bn such that

+
-+ -

()
Therefore we have system of equations

17 BI = 4 S
=> B = C

,

2) B,
+ B2 = 42 => B2 = (2-4

gaussian elimination

& => Pn-1 = En-1-En-2

n - 1) B ,
+ Bz+ + Bn-

= Xn - 1 & => Bn = Cn -2n -1
n) B ,

+ Pz+ + Bn- 1
+ Bu =

n

The solution is therefore

B = & , Bz=
2

-x,.. .. . .

Bu
= En-Xn-1

Therefore system forms basis



Steinitz Exchange Lemma

Lemma Steinitz exchange lemma

Let JEFF" be a subspace . SF583 non trivial and let SV
, ..., 1g] be a basis.

Then VESK83 , Ejedl, ..., 97 S . t swapping & and Ij forms a basis.

&V, : j-1 ,
A

, j+ 1 , ..., Yq) is a basis of s as well.

Proof : u = <
,
V + . . . + qq

As U + 8 , Eje11 , qI such that aj +O

Let's prove that VI
, ..., Vj1 ,

A
, Yj+, q forms a basis

Since [Vj , j = 1, ..., 97 forms a basis for S ,

a = <
, 1 = G

, Y + ... +Cqq (*)
i

i = 1

Since Ljt0,
we can write

j =-iv) = =+(j) Vi
i7j j

Now G = [V
, ...; j- 1

,
4 , j+ 1 ,

.... Yq] still spans s

To show linear independence , suppose

0 =

Bifi + Ou

j
for some BiEIF , ICiEq ,

UelF
, iFj . Substituting a from (*/

a = [Biti+v() = (Bitavi+

Is j

By linear independence of [1j , j = 1, ..., 94

Bis + Uxk = 0 for each 1 +J



Since <j + 0 and raj = 0 => U = 0 and BptUk = 0 for each K +j

=> Bi = 0 VKj

Thus G is linearly independant W

Moreover we can take swap any index j where xj O in
q

u = [4jyj
j= 1

Example :

Consider a basis for 1 ,
1, and he

v = (b)v = (i) a= (3)
u = 24 + 0 . 4

swapping a and U : &G
,
22] forms a basis.

Since A = 24 + &12 , Swapping & and I does NOT form a basis

Dimensions

Theorem

Every subspace S & IF" has a basis and every basis of S has the same number of
elements

Proof : Providing a method to construct a basis and show this method terminates after
finitely many steps
1) CASE 1 : S = 383 then I has basis &

2) CASE 2 : If SFGY then take +2 and the following steps

Step 1 : If S =Sp(X,3) ,
then we are done

Else if SESp(NY) then SpSp(EXY) then take

UzES Sp(dy, Y) (so 12 is independent of 11)

Step 2 : If S = Sp(51 ,
123) then 1 and he is a basis of S. I

Else it S + Sp(X ,
124)

, then SqSp(4 ,
127) then take

13 ES\Sp(91 , well (So Is is independent of 12 ,
(2)



I
Step 1 : If 5 =Sp(31,...,[3) then 1:, is a basis of S

and
, ..., are linearly independent

If not
, then StSp(y ,

Y2
, ..., [x)) then SPSp14 , 12 ,

..., (7) then take

Vis + 1
= S)Sp(X, ..., (x))

Then [1 , 12
, ..., Yk , k is linearly independent

claim : This algorithm stops afterIn steps

proof : (via contradiction

Suppose we have madea steps and we haven linearly independent vectors

VI , .... In

and consider a = (t) ..... en)
Suppose the procedure does not stop

Apply Iteratively Steinitz Exchange Lemma replacing &j with Vi for some i
, j

1)If we can apply Steinitz Exchange Lemma u times then we will get that

Y
, ..., In is a basis of An

Indeed after the first application ,
we get

&
, ... , j-1 , Vi , ejt11 :, en is a basis

If after n steps we get
Y 1..; In ,

then IF Sp(1 , ..., In).

so in our procedure , necessarily J =Sp1y , ..., knY)

#1) Assume that after K steps we cannot swap k+1
with 21+1

At this step ,
we have basis VI

, ...,V , K+ 1 ...., In

Consider K+= /V + .... + (1) Yk + (1+18k+ 1 + xn2n

If +I cannot be swapped with EKH ...... In to get a basis
,

we necessarily have

xk+ 1
=... = Xy = 0



So kH
=Vi + .. . + X UkESp(EX ..., Vich)

But VieS(Sp(X , ..., (n]) => (+1Sp(X ..... (4)

This is a contradiction
.

*

claim 2 : Every basis forI has the same number of elements

proof : (by contradiction)

Assume that Kl and

11 , ..., UK and V, ..., ve are a basis for J.

Clinearly independent)

Apply iteratively Steinitz exchange lemma to insert u...... 4 into
..., e

Assume that for t>k ,
we cannot swap Att with either of j in

U1 , . . . , t , Yt+ , ..., El

Then consider

A ++ 1
= 2y ,+... + x

+ A + + (+ 1ft+ 1
+ .... + xe-l

Then by Steinitz Exchange Lemma
, St =... =C = 0 hence

++ 1
= Gu , + .. .. +

+ At

This contradicts linear independance of 41
, ..., 41

Thus w .
l

. 0 .g A,
, ..., k , +1 , he is a basis of

But S = Sp(a, ..., xh). In particular
* k+ 1

= ( , 11 + ... + xk41)

which contradicts linear independence.

Thus k= 1.
.

⑭

Definition

For any subspace S&F" ,
we define dimension of s by

dim(s) = #(basis of 5) cardinality



Example :

1) If" has standard basis Se, ..., EnY,
hence

dim(14) = Sel, . .

., en] = n

2) For C ,
dim(1) depends on the ground field.

3) Consider solution set to homogeneous linear system
x,

+ xz + xz = 0

claim that V = (1 ,
0

, -1) and V = (0 ,
1 , -1) Spans S.

clearly V , UzES and they are linearly independent since

6 (1
,

0
,
- 1) + 22(0 , 1 - 1) = 10 , 0 , 0) (41 , 62

, 2
- (2) = 10 , 0

,
0

# 4 = 0
,

%2 = 0

Further every solution has form

(x,32 ,

- x ,
-3) = x , (1 ,

0
,
- 1) + x2(0 ,

1
,

- 1)

so every solution belongs to Sp(EX ,
123)

Properties of dimensions and basis

Lemma

Suppose S[#" is a linear subspace of
"
of dimensiona

(0) Every linear independent set of vectors S
..., EYCS can be extended to a basis

of

(2) Any linearly independent subset G has no more than a elements

(ii) Any linearly independent subset G-F" can be extended to a basis of IF

(ii) Any finite spanning set fors contains a basis of

Hence no subset containing fewer than q elements span s

(iv)Any linearly independent subset of containing a elements span s so itisa

Similarly if a set of size a spans) then it is linearly independent and its
A basis.

(v) Ifa=0
, then S = Se3. If gen , then S="



Proof :

(0) dim(s) = g .

Let Y, . . .

., Yq be a basis of J.

Apply Steinitz Exchange Lemma recursively to A, ..., At and basis , ..., a (thentoa
So at th step, you want to exchange t with in bas

A1 , 12 ,
. . .

., k+ ....., q

Since its a basis

Ak+ 1
= ( , 41 + .... + fak + Gk+ 17k+ 1

+ .... + qq

claim : Not all Ek+s ...q are O'S

proof : (via contradiction

Indeed if LA ... =qFO , then in particular (due to being a basis

Ak+ 1
= G

, 4, + .... + 6kk

which contradicts linear independence of A, ... k
⑯

so AjC [k+ 1
, 91 such that dj+0 hence by Steinitz Exchange Lemma,

Mi
,

.
. . .

, k+ / ....., j - 1 , Yk+ /1jti:,q

is a basis.

upto renumbering Vis ,
without loss of generality ,

assume j = k+

Mi
, ..., k, + 11 k+21. Yq is a basis.

i)By tbe linearly independent
subset ofs By (0) ,

it could be extenda

Mi,
. . .

., t , t+ i
: " Yg

so t = q

ii) This is (0) with S = #F

iii) Let G =[
, ...., +Y Verify Sp(G) = S

(a) If E is linearly independent it is a basis

(b) If not ,
Ek , ,

. . .

,dt) + (0, . . ., 0) such that x, +....+x+ 4t =0

Without loss of generality ,
assume <t +@



Then Ut =- ....A

claim : Sp(a, ..., rh) = S
,
vet substitute

proof : I
Indeed LES

,
V= B ,

a,
+...+ P

+
*+ - 1

+ B+ At

= (p ,

- 3+ q(y) + .... + (Bt 1

-

B-t -1)(t - 1 => (p(y ,...., 4t -1) =S

It (1 , ·";, +-1Y is linearly independent ,
done

If not repeat steps. Iterating this procedure ,
we arrive after It steps ,

we

arrive to the linearly independent set
(basis)= U, ..., Ar such that Spla , ...,a) =-

&

iv) dim(s) =

q = - a basis A, ...., q

a) IfAl , ..., Ug is linearly independent
Incase if Sp(541 ,

--,99) #S then complete this set to a basis of S

Ul
, . . . q , Aq+

..... Agts

But then we have a basis withatsq contradicts theorem that all basis
have same number elements

b) Assume Sp(a,...,q7) = S
. By (iii) , a subset of 41 ...., ug is a basis of

But byThm above this basis has a elements so 41
, ..., Ag is a basis

(v) a)q = 0 = basis d = S = Sp(a) = (8)

b) q=n
,
let 11

, .. In be a basis of J. By (iii), this set can be extended to a basis

B = EX
, ..., In , En+, ....7 of FM

But if B is strictly larger than F , ...., In ,
then we have a basis of I with In

elements -
Indeed If" has basis

q =(edim
M



Example :

1) Consider the 3 vectors

(2) · (5) · (i)
As shown before these are not linearly independent.

Theorem

Let As =y be a linear system of pequations inn variables.

If its set of solutions is not empty then every solution has form

1= Lik+...qq + 0 ,
4, ,GgEF (*)

where SV1 ,
..., qY is a basis for the solution set of Az = O and

t is the particular solution to Ac =

y

The expression (*) is known as (*) is called the general solution to the system of
equations

Example :

Consider

x, + xz + xj = 1& x - xy = 0
A = (0! +) = = (0)

Particular solution

x = (1 , 0 , 8)

Via gaussian elimination

w = 4(2,
- 1

,
1)

so a = <(2 , -1
,
1) + (1 , 0

,
0) = (24+ 1

, -2 , (1) ,
one degree of freedom ,

choice of de

Another particular is 20 = (1 ,
1
, 1) and if < = 212,

w = 2) - 2
,
7

,
7)

60 a = 6)- 2
,

1
, 1) + (- 1 , 1 , 1) = ( 1 - 2x

,
k + 1

,
4+ 1)



SUM AND DIRECT SUM OF SUBSPACES
We want to construct a subspace from subspaces.

Let S1 and Je be 2 subspaces ofF
Problem SzUSz

(B) , BEF-0 (a
,
0) + (0 , B) = ( , B)

↑ ( , 0) def

S1 = [(2, 0) : xERR] Sz= [(0, 4) : BERRY

S11Sz = 2(0 , 037 is a subspace

SzUSe is NOT a subspace

Direct Sums

Definition Sum ofSubspaces
Let Sz, ...., Sq<F be subspaces. Then sum

SatSzt ... t Sq = Sp(szu .... Usq) = E, + - ...+qq SjfF, jesj]

When

sin(z) = 18 V1j

we call this the direct sum denoted

S 50 ... Sq = Sj

Theorem

For
any subspaces St . ..., SqeF
i) Sy 1 .... 1Sq is a subspace

(ii) Sy +... . + Sq is a subspace

Proof

ii) Span(anything) is always a subspace -> Sa+....+ Sq = Sp(szU .... sq) is a

subspace



i) 487 ES Vk = 1
,

. .

., q = 4847S11 . ... 1Sq
E1 ,

. . .

., +Sy1 ....1Sq Vz ,
....

, tVj = 1 ,..., q , ieSj
So v,

. . .

., VgESj , j = 1, ..., q

5 is a subspace , Vaz , ..., Et ,
divi+ ...+ESj Vj = 1

, ...,q

=>L ... tqqES .... Sq S ..... Sq is a subspace.
Example :

1) Let Self" be defined by I j
Sz" be defined by ZBjej = @

Then S1162 is defined by2
2) If and standard basis vectors

a = (g) a = (i) es = (g)
Let Sj =Splej) : each of these is a line we call an axis when F = RR

Notice that Sj1S = 587 for jt

↓ Se = Sp(el , 22) is the plane defined by sy=

3) IF, V = Sp(e ,,er) = &(d , B ,
0) <

, BEIFY

Vz = Sp(ez ,
23)

vi + Vz = sp(V, UVz) = Sp(e ,
er

,
es) = If

v
, 1Vz = Sp(ez)



Lemma

Let Je , Se be subspaces of I? Then

dim(S1+S2) = dim(S1) + dim(2)-dim(s11Sc)

In particular for direct sum

dim(s10S2) = dim(s1) + dim(sz)

Example rSz A2 dim(s ,) = 1

dimv, = 2

dim(52)=
dim Vz = 2

> S dim/s, 15) = 0

dim(V,
+ Vz) = 3

dimls, USz) = 2

dim(V, 1v) = 1

Lemma

Let SS2 .... DSq be a direct sum of subspaces and

vjesj [03 (non-zero) for j = 1
,

. . .

.. 9

Then F,...., q
are linearly independent

Proof :

Assume[j= Vj,

<jfj =- qj=
k +j

=>(jVj =0

=> <j =0 Vj = 1 ,
...., q

*



2. Matrices and Linear Maps
LINEAR MAPS

Definition Linear Maps

A map L:F
*
-> FFP is called linear map if

((xu + By) = x((u) + BL(X) Va ,Bel, Ver

Example :

Let A be a nxp matrix. Then

A(cu + By) = CAU + BAX

: U1 < An is a linear map

Lemma

A map LiF
*

- IFP is a linear map if and only if

-AtMatyxn S .
t L(a) = Ad

Proof :

() :: Consider

a = () , e =() ...=
and define A = (((2) ... . L(en) = Matexn that is columns of A are vectors ((ei) ,

i =1 , n

Lets Verify that VEF", we have <(a)= Au

We have u =de 1 +... Gen=jej

(a) = ((6 , 8 + .. .. + nen) = 2
,
((q) + .... + achlen) = ((2)...., ken)))) = A

Hence A = (L(e) .... en)) To find A
Remark :

We distinguish between matrices and linear maps

For example ,
the linear map LicR ; L(x2) = (x, 0) is representedbyi

trix

A =(



Remark If M is a matrix with real co-efficients
, then it defines a linear map

IR" -> IRP
but also a linear map "-> P

The converse NOT true

Further any linear
The matrix just not

Map L :IR
*-IP has a natural extension to a linear map Li P

change, just using the fact REC.

Converse NOT true
, for example

L: (2-> D ; (( ,
3) = ix] is represented by
A = (i 0)

clearly does not map IR into IR

Remark

Let M and N be linear maps with the corresponding matrices A and B
. Then

aL+ BM : (L + BM) (a) = <L(a) + BM(a) is a linear map with

xA + BB

Recap : Multiplication of matrices

A(Aij) = ( I B(Bij) =)M
AB = (ij where Cij = Air Bij AER"P BEIRPq

ABEIRhXq
Proposition
Matrix multiplication satisfies the following properties

if AERMYn and B
,
CERYP then

A(B+c) = AB + BC

and if A ,
BERMYM and CERNP then

(A+ B) c = AC + BC



Proposition

i) If AERMYY and BERYP and v ,SER then

(vA)(sB) = vs(AB)

ii) If AERMYY, BeRP and CelRPX9 then

(AB) C = A(BC)

The definition above is compatible with matrix multiplication
As

of a matrix nxp by a vector SEAFP if you consider a vector as pxl matrix

In particular for matrices A and B and a vector a) of appropriate size
,

we have

(AB)() = A(Bx)

⑮
VaEFF"

,
(a = Be = M(L(a)) = AlBe)

=> (oL)(a) = A(Bx) = (AB)c

composition associativity

Lemma

Let L : /F FP and M: FP c IF be 2 linear maps represented by

AtMat(IF) and BEMat(F) respectively
Then

MoL is linear

represented by
BA



IMAGES AND KERNEL; RANK AND NULLITY

Images

wecan uselinear maps
to rephrase the problem of existence and uniqueness for lineas

To a system of p linear equations in n unknowns
, Ac=y ,

We assign the linear map

L: /F + IFP; (2) = Ad

Definition Image and Kernel

Let L be a Linear map from IF" to #P ; L : /F < #P

Image of L : [m(L) = GyEFPy = ((x) for some eeF

Kernel of L : Ker() = EEF" (12) = 03 also called null-space

Lemma

Suppose L is a linear map L
: F

* FP

· Im(L) is a subspace of FFP

· Ker(L) is a subspace of An

Further when L is represented by a matrix At Mat (IF)
PXn

Im(2) is the subspace spanned by the columns of A

Proof :

· Gt ((8) => (10) =@tIm(L)

For any U
,
VEIm(L)

, then Eye" stu = <(2) and v =L(y)
(a+ By = x(q) + BL(y) = ((x2 + 3q) [Im(L)

=> subspace
· OtKer(1) as L(f) = 0

Va, (kev(L) ,
Va

, BEIF

((Ga + By) = x((a)+ BL(z) = 0 = (a + B(ker(L)
=> subspace



Now recall from above that columns of A are ((21), ...... Llen)

A = (((21) . . . . . ((en)

Now if veIm(L) if and only if V = ((u) for some we and we can write

= jej for some j

Linearity gives

1([jej) = [a; <(ej) = sp(((2) , ...., (en)

and we conclude

Im() = Sp(((21), .... ((en)
#

Notation: Some additional notation for image and kernel

*Im(L) = [((a) : acF"3-FP

* Ker() = [a = #F" ((a) = 07

Definition Rank/Nullity
Let L be a linear map .

Rank of L ,
vk)L) is the dimension of Im(2)

Nullity of L ,
null(2) is the dimension of Ker(2)

Remark :

Let A be the matrix that represents (

By Lemma 2.4 ,
Im(1) = Sp(columns of A)

so dimL = maximal number of linearly independent columns of A .

Fact : UKA = rKAT
.

That is maximal number of linearly independent columns

= maximal number of linearly independent rows



Theorem Rank- Nullity Theorem

For a linear map L
:F <IFP

n= vk(2) + null(2)

Proof: Consider KerL and Im L

Since KerL is a subspace ,
let

B = [11
,

"

- Aq) be a basis of KerL> dimker(1) = null (2) =q

By Lemma 1. 12 (ii) we can extend basis B to a basis of F :

[1
,

. .

., Aq , Vl , . . .

., VrY (n =

q + v)

We are going to show that L(4),
.....,
L(Xr) is a basis of Im(2)

(i) Linear Independence : Let <
, L(y) + .. . . + dy((w) = 0

= ((x , x +.... + xvkv) =04
, k ,+ .... + drkrtkev(z) .

Since B is a basis for Ker L

L, + .. .. +((v = B ,
y+.... + Bq4q) -

3 ,
y......

-

Bqq + G4+.... + CrV = 0

But S41
, ...., 1q,

11 , , 17 is a basis so these vectors are linearly independent

=> d =... =4 = 0

=> ((1) .... (Ir) are linearly independent
(ii) ImL = Sp((((i) ,

.... ((1r)) : Let uE Im(L)
. Then ILEF" such that

u = ((V)

Since B is a basis for #

1 = 31a) + ...... + Bqq+ x
,V + .... + CrV

Therefore we have

n = L(y) = L(p, y, + .. - + Bq4q+ C , k + .. .. + dr()

= Pq((y) + .... + Bq((q) + G
,
((k) + .... + (L)(r)

= G
,
((k) + .. .. + ((((r) =Sp(t(y) ......, L(ur)

> Im(2) = Sp((((1) ....., L(ur)



By (i) and (ii)
((1)

,
. . . .

,
((Vr) is a basis for ImL => dimIm(2)= vkL = r

Therefore n= ++ = null (2) + vk(2)
↑

Reminder : Let L : FF" #P be a linear map
· (is one-to-one (injective) ifL(a)) = 1(12) => 1 = 12

· L is onto (surjective) if VACFPIbcF" c. t ((b) = & (Im(L) = #FP)

· Lis bijective if t is both one to one and onto

Lemma

A linear map C : F
*-FP is

i) one to one - Ker(L) = 583 => null (2) = 0

ii) onto > vk(2) = p

iii) bijective #- null)() = 0 and n =p

Proof :

i (E) : Kerl = [83 ·
Then if <(a) = <(1) *) ((1-2) = 8

# U-VE Ker L

# H -V = 0

# = /

# : Lis 1 to 1
.
Since (18) = @

- Ker L
. Then VuekerL ,

La = Op = (On = U = On

ii) uk(c) =

P = dim Im() Es dim Im(L) = p. But the only subspace of IFP of dimension
pis #P. So

dimIm(2) = pE) ImL = FFP

iii) By rank-nullity theorem
Conto) p = n - null ( = n Cone-to-one #



Corollary
A system of ((2) = y has a solution # yeIm()
When it has a solution

,
it is unique EX KerL = O Cone-to-one

Proof :

1 a solution a > ((2) :g
#- Ye Im

A solution is unique # We can have S
2(24) =

7
ES24 = (2

((222) =

7

(E) : Contrapositive :

Weare going
to prove that KevL9 then there is more thanone

Let UEKerL1587
,
that is L(a) = 0 and UFO

Let to be a solution => (20) =

7

Then otu # So and ((xo +u) = <(e ) + ((u) = (2 0) =

7

(E) : Contropositive : Lets show that if 82 are both solutions to ((2)= then
Ker L = 58]

Indeed 24-12 #1 and (10) - 22) = ((4) - (2) = y -

7 = 0

=> 21-22 EKerL48]
#

Remark : the corollary above
,
the uniqueness the uniqueness of solution to (2 =

y dependsBy
on L only (not on y)
This is not a case for general non-linear system
counterexamples : 1) F : IR2-> IR

(x
,x2) + (ex+x2

,
x2)

consider equation F(x,) = (1 , a) E[S1
If lak 1 then there is no solution

If (a) = 1
, they a unique solution Co , a)

If19k 1 , then E2 solutions (Fa
,
a)



INVERTIBLE LINEAR MAPS; CHANGE OF BASIS

2) Consider G( , s) = (4x+ 1
,
x) and Gloss) = (1

,
a)

If ato,
a unique solution (a,a)

If a = 0, infinitely many solutions
(b

, 0)
,
belR

corollary
For a homogeneous linear system of p equations in n unknowns,

Ax = G

the number of linearly independent solutions equal n-rkA

Proof :

The number of linearly independent solutions = dimKerA = nullA
,
UKA = dimA.

By rank nullity theorem

rkA + null A =n= null A= n-rKA
F

Fact : By using the fact that the # of linearly independent columns of A = # of linearly, indp
rows of +,

The number of linearly independent solutions =n v

~ is the number of linearly independent equations

Lemma

If L : F
*
-> #" is an invertible linear map , represented by an nxn matrix A

, then

Lt is linear

and is represented by At

Recall : Invertible map L : A >BEX All : B- A s . t

Lollida and L'OLFidA
Inverse matrix : Inverse to a matrix A is a matrix A "such that

A .A = A: A = In



Proof : We want to show that V
,
LEF"(odomain) and UX

, BEF,

[ (au + py) = c(a) + B(" (1)

L is invertible
, in particular , I-to-one , enough to show

L(ens) = L(rhs)

((( (da + By)) = Ca + Bu

< (aL"(a) + B("(1)) = x((2 (a)) + BL(z"(x)) = cu +4) => ((en) = ((rhs)

LetLl be represented by a matrix B

LoL" is represented by BA and LoL"=I
,

so

I = BA and similarly F= BA = B= At
#

Lemma

A basis &V, ...., UnY of F A linear map

LiF"-> F

is invertible > ((4), ..., ((2n) is a basis

In particular an uxn matrix is invertible > its columns provide a basis of F

proof : Suppose Lis invertible.

Lets check ((4)
, ...., L(Xn) is linearly independent, then they span #" by lemma 1

. 12 hence

they form a basis

Assume <L(41)+.. .. +Cn(((n) = 0

We know by Lemma 2 . 8
,
Lis linear. Then

1 = [ (8) = L" ( , L(y) + .... + 2n(((n)

= xX,+ .. .. + In

But EX1
, ..., InY is a basis X

,
= 22 = ....

n
= 0

=> ((v), . . .

., L(Xn) are linearly independent
=>Span if" (lemma 1 . 12)

=> form a basis



(E) : Now assume ((v)
, ...., ((vn) form a basis of

M

By the rank-nullity theorem,
it is enough to show that Kerl = 58]

(because then null = 0 = vkl = n-0 = n => ImL =I"

=>[L(i)
,

. . .

., L(vn)Y spans IF"

=> basis of
"

by lemma 1 . 12.

Let (ker . The= ((x) ... (=))) ) = e

= < , ((k) +... + (n(((n) = 0

=>2 = .. .. =2n = 0 = Kerl= 287

By rank nullity theorem vk( =n > Im(=
"

= Lis bijection (invertible
↑

Example :

1) A ,
= (0j) = (2)

It is the linear map represented by
(2 (x , xz) = (- x2

,
x , )

LI
2 = (b)2 = (i) 21 22 -

I ↑31 -

2 1-

2) A= (00)
& 14 22

22 + 2



EIGENVECTORS AND EIGENVALUES
Notation:

L : F"-> #" (2 : FY)

Definition

A linear map L : /F2

An eigenvector of L is a non-zero vector IEF" such that

L1 = X1 where XeF

In this case X is an eigenvalue of L
The same definition applicable to matrices

Av = X

The set of all eigenvalues of L is called the spectrum of L : Spec L

SpecL = EXEF L-XIn is not invertible?

Indeed
(v = X (L-XIdn) = 0

Example :

i) A = (g) ,) X
,
+x

Then X
,
and X2 are eigenvalues ,

the corresponding eigenvectors are (b) and (9)
ii) If X

,
= X

2
in i) then we have the matrix XIF2 which has precisely one eigenvalue x ,

iii) In R it is possible to have matrix with no eigenvalues
A =(j)

(i)() = *(a)( % ) + (8)

(
- b = xaz

- b = yb = 1 = 3
a = Xb

iv) Matrix with one eigenvalue and one linearly independent eigenvector

(82) (x = 2 = = (i)



Remark :

Eigenvectors are never unique.

If I is an eigenvector , so is XI
,
XeF

LI =XI
, 170 ,

Xer
,
Net

Remark : If (v = XX ,

=> ((k + (2) = x(k + v2)
(ve = XV2

=> (l +( = XV + Xv

Definition Eigenspace
Given an eigenvalue x of a linear map L : F

*

- IF, we call

Ker(L-XIn) = ELEAF" (L-XIn) = = 8)

the eigenspace for eigenvalue of L

dim Ker(-XIn) is called the geometric multiplicity of X

Note : O is not an eigenvector , eventhough it belongs to the eigenspace

Example:

L : (2-> (2
,
(

1 (x , x2) = ( x2 ,
02)

L
, represented by A =(b)

(96)((y) = x()=( = x =x = N=z

=> x= i

1)x = i [big = (y) = (ii)
2)x=i [by = (i) = (ix) ,

x + 0

kev(l-itz) = ker(): +) = sp(i)
as all linear combinations are eigenvectors

ker(-(i) (2) = ker(([if) = Sp( :)) Ebelong to KerlLtI



Lemma

Let X, ,
. .

.., Xq be distinct eigenvalues of LiF
*

2

Then the corresponding eigenspaces form a direct sum

S
, 0520 . ... Sq

In particular eigenvectors 11
, .... Yg for distinct eigenvalues are linearly independent

Proof : Reminder : S10 ...... Sq mean that Vl = 1
, ..., q , Sen(Z)=

For example ifq =2
,

we need to check S11S2 = 38]

↓ Sa 13 : (1 = y
,
1 = y

2
= = (x ,

-x)) = 0 = 1 = 0

proof using induction

Inductive step

Assume that S1 ,

"

, St, form a direct sum
.

consider Sel)"k)
↓ Se = (1 = Xe1 .

Furthermore ve Si ,
hence

1 = V + ..... + Vl-1((k(Sp ,
k= 1 ....., l - 1)

Therefore we have

(1 = X
,
v 1 + .... + Xe-,l-

↓ Se = (1 = Xe1 .

Furthermore ve Si ,
hence

1 = V + ..... + Vl-1((k(Sp ,
k= 1 ....., l - 1)

Therefore we have

(1 = X
,
v 1 + .... + Xe-,l-

↑ (k + .... + (e)) = yet = x
, k +...... + x-l

=> (xy- x1)y, + .... + (1 - jx()y - 1
= 0

=> (x
,

- x)y =..... = (xy 1
- xi)y = 0

=>
y =... = v = 0 = V =0

Hence S....., S , form a direct sum I follows by induction #



DIAGONALIZABILITY
Definition Diagonalizable
A linear map L:F

*-F is diagonalizable over If when

I an invertible nxw matrix PEMnxn(F) for which

PAP is a diagonal matrix

Notation

A)
= Alt...

Let 11 , ...; In be another basis of
"

21 =

B,
V + .... Bin In

: p =(En =

B+... Ban

Hence

All then) +... + (n(Bn i + .... + Bnn(n)
=

Ap()
Notation Diagonal Matrix

PAP is diagonal ES PAP =)
Remark :

(j) : not diagonalizable as an element of M2xIRS
: diagonalizable as an element of M2xc(4)



Theorem

(1) A linear map LiF IF is diagonalizable over If

#
(2) #" has a basis consisting of eigenvectors of L
(3) This is equivalent to saying that F has a direct sum of eigenspaces of L

#

(4) sum of all dimensions of the eigenspaces of L equal to n

Proof :

1 > 2 : Let A represent L . Diagonalizable => &PEMxn(R) such that

↑Ap =/= A
Remark : Vej , Dej = Xjej Vj = 1

, ...., n

Therefore
APej = A(pej) = PDej

= P(xjej) = XjPej

=> Alpej) = Xj(Pej) => Pej is an eigenvector of A

so Pel, ....., Pen are eigenvectors of L.
But Pej is the jth column of P

. By Lemma 1944 ,
Pe

, ...., Pen is a basis
.
(as P is invertible)

2 I : Let V
, : In be a basis of F St (Vj = Xj]j

Consider the matrix P =F ....,n)
. Then Pej = Y

correspondingly ej = Pvj. Then
PAPej = PlAj = Xjp" = Xjej = PAP =)

Proving the other equivalences
Let M,

,
. .

. .,Mq be all the eigenvalues of L and let Sz , ...., Sq be the corresponding
eigenspaces



nj = dimSj = #Bj , j = 1, ...., q

Choose a basis BjforSj , j= 1 , ..., 9. Now
,
if

IF" S; thenUBj is a basis of a

Then n = dim(s)= VBnj
j = 1

i . e .
this union consists ofn linearly independent vectors by Lemma

pg 44 ,
F has a basis

of eigenvectors

conversely if I has a basis of eigenvectors ,
then we can group this basis by corresponding

eigenvalues to get the basis of each sj
q

i . e. if UBj has n elements
, then this is a basis of eigenvectors for F therefore

F ↑

Example :

A =

(01)does nothave anyrealeigene
a set

However
,

over I
,
the matrix A has eigenvalues Ii .

So as 1122
,

we have a basis of
eigenvectors of A A is diagonalizable over I



CHARACTERISTIC POLYMOMIAL
Definition Characteristic Polynomial

AtMnyn(IF)
G(x) = det(xIn- A) = x + c(A)x

*

+... . + ((A) = M + -(A)y
If a linear map L is represented by L

, then we also call c the characteristic polynomial of L

Properties of Determinants

Theorem Determinants

A
, BeMatnxn(IF)
i) det A = 0 iff rkA > n (equally A is not invertible)

ii) det(AB) = det (A) det (B)

In particular ,
det A" = I if A is invertible

det A

So det (B"AB) = det B' det A det B = det A

iii) If A is upper or lower triangular,
det A = product of diagonal elements an , 922, ..., an

In particular, det(d . In) = <" Hence det(xA) = cdetA

iv) det AT= det A

Example:

A = (a)
ch+(x) = det(x(0) - (iii)

= det( )
= (x -ai)(x - ax) - (- a ,2))- az ,

)

= - (ay + a ,
)x+ a , 922 - an922

= x - (an + ac)x + detA = X-trace(A)x + def A

↑



Lemma

Let AtMatnxn(IF) .
Then each (j)A) is a polynomial function of degreej in entries

of A

Furthermore <(A) = -Zajj = tr(A

(n(A) = (- 1) det A

For every j <j)BAB) = CjA for every invertible matrix B

Proof : ch(x) = det(xIn-A) i
i . e. similar matrices have same

chy(x) = det B' def(xIn-A) def B characteristic polynomial

cha(x) = det(B"(xIn A) B)

= det (B"(xIn)B-B"AB)

= det (xIn-BYAB)

= ch
,/B(x) #

Geometric Multiplicity
Let L : If "-> #" be a linear map ,

A is an eigenvalue of L(i . e AVEFF" [87 such that(v = X
(1 = X1 => (l-xIn)1 = 0

=> Ker(2-xIn) + 58]

Definition Geometric multiplicity
Let Ker(L-XIn) be the eigenspace
The geometric multiplicity is dimker(L-XIn)

Algebraic Multiplicity
Let A be the matrix representing L

·(x) = det(XIn-A) is the characteristic polynomial .

so <(x) = 0 => <x(x) = (x - x0)"p(x)
p(xo) + 1) is called algebraic multiplicity



Example :

A
,

= (3) · <(x) = det (x [2 -A
, )

= det(xjsis) = (x-3) => Algebraic multiplicity wrt n

However dimker(A , -3[2) = dimker(85) =

75
geometric multiplicity by sank nullity thm

as vank(A , -31) = num of lin ind columns = 1

= algebraic multiplicitis so

dimker(xIn-Az) = 1

Theorem

Let L :F-> #" be a linear map represented by AtMatnxn(IF)
i) The eigenvalues of Lave the roots in # of its characteristic polynomial (x(x)

The multiplicity of the root is called the algebraic multiplicity of the

eigenvalue

ii)Foragiven eigenvalue
X

,
its algebraic multiplicity is bigger than its geometra

(iii) If A is upper or lower triangular, then

((x) = (x - a
, )x .... x(x - ann)

(iv) There are at mostn different eigenvalues of L
(v) If I has n distinct eigenvalues (i . e. cy(X) has distinct roots in F,

) then L is

diagonalizable
Proof :

ii) Let geometric multiplicity of I bea

dimker(xIn -A) = q

and this
,

we can find a basis S =V ......., XqY of Ker (XIn-A)

complete 1 to be a basis of J = Ex......, q , Aqt....... And of If*



Let Ms be the matrix with columns
...... In

Ms = (V
,

. . . .

., g , Aqt, ... ... Unl

Note : Mgej = Vj Vj =
1, . . . .

., q

=> ej = Mjvj
claim : First a columns of MJAMs are xej jed1,...., ql

Vjc11 , q] MjAMsej = MjANj
= Mj(XXj) Xj belongs to eigenspace
= XMjvj

-= x2)

so MjAms= I
⑮

The characteristic polynomial of MJAM is

x- x 0 O

j x- x 0

i = det (xIn-MjAMs) = det 00x- XI jjj I
= (x -x)9p(x)

=> algebraic multiplicity of X w.v. t Ms AMs is q

But G(x) = (() = G() = (x-xk => algebraic multiplicity of x wrt Aa



Example :

upper triangular ,
has eigenvaluesi)

(F - 2, log(2) ,
117 diagonal entries

distinct diagonalizable
ii) ((x, 3) = (-52 ,

x) has characteristic polynomial

-
,

(x) = x + 1

SincetrA=
0

,
deta) = 1. So as a linear map from R to R this haa

=> not diagonalizable in IR
it L :D-> &

, eigenvalues are

(x2 + 1) = (x - i)(x + i) => x = i orx = - i

=> diagonalizable
Follows from section on diagonalizability

(ii) ])( :) = 109)

iii) A =10 upper triangular -> eigenvalues are 1
,
1

, 0

Algebraic multiplicity of 1 is 2.

Algebraic multiplicity of O is 1

Ker(A - Is) = (8 % I - Sp(a ,
22)

0 O j

and Ker(A) = Splez-es)
Basis of eigenvectors21

,
2 , 22-es

p =( Ap =)



DETERMINANTS: a reminder
Definition Determinant

Let A = (aij) be a matrix At MathF).
The determinant is defined to be

- 2( , yN(0)a
, 04...... anointdet A =TAni

Here

Sn = 50 : /1
, ...., n3 < &1

,

. . . .

., n9 O is invertible?

Sn is the set of all permutations (symmetric group

N(o) = #5(j , k) 1 j[kIn and O(j) 0(k)7 number of inversions of o

Theorem

Let AtMatnYF) with columns A
,

. . . . An with detA

i) Swapping columns changes sign of det A

ii) If 2 columns of A are scalar multiples of each other , then det(A) = 0

iii) If jth column of A is replaced by <Aj + pAp ,
then the new matrix has determinant

xdet(A)

Properties are equally true if "columns" are replaced by "rows"

defa a s) =

adzz-azazz-Az + Azzaga
- a

, za23931



cofactors

Definition Minor and Cofactor

Let A = (Ajk)-MSF)

A=
For each 11j , KIn ,

we can get an (n-1)x(n-1) matrix by deleting the jth row and
4th column

The determinant of such a matrix is denoted by MjkEF is called the (j , k)-minor of A

The (j , k)-cofactor of A is defined to be

(jk : = (- 1)i+Mjk

Theorem Laplace Formula for Determinant

Let A = (Aji) MnF).

1) For each fixed all 1 In , expansion along juth row

det(A) = Aikik

2) For each fixed all LKIn, expansion along 12-th column

det(A) = Aikik

Definition Cofactor Matrix

Let AtMatnYF)
The cofactor matrix of A is

cof(A) = ((jx) =) ((j ,
k) entry is the (j-k) cofactorofis

The classical adjoint (or adjugate matrix) of A is the transpose of cofactor matrix

adj(A) = cof(A)T= (jx)



CAYLEY HAMILTON THEOREM

Theorem Adjugate ,
determinant and inverse

Let A = (Aij)eMnxn(f) . Then

A . adjA = det(A) In = adj(A) A

In particular , if det(A) + O
, then A is invertible and

A = 1det(a)adj(A)

Suppose
p(x) = <mx

*
+ <m-,

x
*"

+... + G
,
x + do

is a polynomial with coefficients in #F

Given AtMatF) , define P(A)

P(A) = 4mAm + Cm- ,
A
*

+ .... + -A + dol

Theorem The Cayley Hamilton Theorem
Let At Mnyn(F).

Let ca be the characteristic polynomial of A. Then

(x(A) = 0 Matnxn(IF)
Proof :

B = A -xI

<x(x) = (- 1)det B

By thm above
, Badj(A) = def(B) In

adj(B) = (Bij) . Every Bij is a polynomial of degree n I by defi of cofactor

Bij=bij =p ( &adjB =Pl
,
a

adj(B) = Bo + Byx + Bys + ...... + Bn-c where

Bo = (bijo), .. . . . Bl = (bije)

det(B) In = Badj(B) = B(Bo + Byx + ..... + Bn-
-)

= (A - x()(By + Bx + ..... + Bu-(n 1)



= ABo + ABqx + .. .. + ABn- ,
" - Box - Bas -

..... - By ,
s

= AB + (ABz - Bo(x + ..... - Bn-1s leg 1)

G(x) = c + (x + .... - + (x

det BIn = cy(x) => det(B) In = col + Ie +... .. + Cn-EccnIs leg 2)

Comparing coefficients of (eq1) and legz)

Cl = ABo X I

(I = AB1 - Bo x A

(21 = ABy - B1 XA
·

:

n-11 = ABn-1
- Bn - z

xAn
-

(nI = - Bn- 1
xAm

=> Cl = ABo

(A = A B1 - ABo

(A = A By - ABz
:

(n- ,
A "

= ABn- 1
- Bn - 2

cnA"= - AMBn-1

Adding these up ,
all terms on RHS cancel

=> G(A) = Gl+ (A + .. .. +GA = 0
T

Example :

Using Cayley Hamilton Theorem to find inverse of

A =(
det A = 5 => A"exists

q(x) = 30
4

(x- 1)3(x - 5) = -x+ 7x - 11x + 51 - s 2 -

1 O 3 -x



According to Cayley - Hamilton theorem
-As + 7A2 - 11A + 51 = Onxn

Multiplying this byAt on the left
,

we find that

-A + 7A - 111 + 5A" = Onxn or A" = 11A2-7A + 111)

= I
Linking some ideas

AMY) , nike F

A" = A ...... A 1 times A = I

[dA" = p(A) , pl=
(y(A) = Onxn

A : power series : used to denote analytic functions like

adj(A) A = det(A) Inxn = Aadj(A)
We have characteristic monic polynomial

((x) = x + a
,
x ...... - + an-p + an

an = (-1)" detA Inxn

substituting A by Cayley-Hamilton Theorem

Onxn= G(A) = A+ a
,
A
*

+...... + an-A + ( 1)det(A) Inxn

=> (
*

det A Inxn= An + a ,
A ....... t A) by subtracting FildetA

= (An + a
,
An+ ..... + an-1)A

=Al+ a
,
An ..... + an 1)

= M



MINIMAL POLYNOMIAL

=> (1)
**

det (A) Inxn = A .M = M .A

detA + 0 = M = adj(A)( - 1)* = (- 1)
**

(A
*Ta

,
A*... + an!

Let L :F < #" be a linear map. Crepresented by AcMatn)
Define12, ,......

2
= LOL

,
C = PoL = LoLoL,.. . . .

,
" = (

"%L= LoLo ..... of K timesL

↑ Y i
represented A3

by A2=AA

Let p(x) be the polynomial

p(x) = (mxm + (m- ,
x" ..... - + a

,
x + ajx

with coefficients diF

Define linear transformation by formula : p(z) : F->F

p(t) = 2m(m + Gm- 1(
*

...... 2,L +G

Definition Minimal Polynomial of A

Let AEMath)
The minimal polynomial of A da(x) is the mic polynomial pla) of least degree
vanishing at A:

p(a) = 0

Example
A = In. (n= (x-1) = det(In - In)

At the same time din= (x-1)

Indeed din(In) = In In = OIn

Definition Minimal Polynomial of L

Let L : F"-> #" be a linear map

The minimal polynomial of Lda() is the monic polynomial pla) of least degree
vanishing at L : p(z) = 0



From now on
,
let AtMath) represent linear map L : FF" < FF"

I use Land A interchangeably
Lemma

The minimal polynomial of A is unique and fixed and divides the characteristic polynomial
Proof :

degdy(x) = m
.

Let p(x) be the polynomial s . 7 p(A)= O

=> degp(x) = m

By Euclidean division

p(x) =g(x)dA(x) + v(x) degr = m+

substituting x =A

p(a) = q(A)dA(A) + v(A) = 0nxn= q(A)Onxn + v(A)

=> r(A) = 0
nxn

This contradicts assertion that dal) has the smallest degree and deg(r) < deg (dA) unless

r(x) O

=> p(x) =g(x)dx(x)
=> da(x) p(x)

Uniqueness :

Let dx(x) and Sg() both verify defn of minimial polynomial .

=>

d =p Be aS
As da and a

both monic
, B =1 by comparing co-efficients with sch

=> da(x) = Ga(x)
↑



Let L :F < #" be a linear map. Crepresented by AcMatn)
Define12, ,......

2
= LOL

,
C = CoL = LoLoL, . . . . .

,
" = L

*bLLoLo ..... o K timesL

↑ Y i
represented A3

by A2=AA

Let p(x) be the polynomial

p(x) = (mxm + (m- ,
x" ..... - + a

,
x + ajx

with coefficients diF

Define linear transformation by formula : p(z) : F->F

p(t) = 2m(m + Gm- 1(
*

...... 2,L +G

By property of linear maps, p(2) is represented by PCA)

So byCayley - hamilton
,
(l) = Onxn

We also have minimial polynomial of L , dy(x)

Theorem

Let L :F-> #
"

a linear map

A scalar XEF is an eigenvalue ofL d(x) = 0

Proof :

(E) : Assume X be a root of dyk)

dy(x) = 0 = d
,
(x) = (x-x)p(x)degd = deg(x - x) + degp(x)

deg p(x) < degdy() => p(t) + 0
So ILEF483 such that

E : = p(L)1 + @

d
,
()(x) = 0 = [(- XI)p(x)]

= (2-[x)[P(z)]] associativity
= (l-[X)w = (w - X = ( = Lu = X = X is an eigenvalue of (



# : Assume VEFF"[8] is an eigenvector
IEFF" 58Y S .t LV =X

By definition of minimal polynomial ,
d
,
(2) = Onxn

Onxn= dy(z)(x) = (2 + (n- 12" + ..... + GL + Goid)(x)
= (V + (n+

*

V + ..... + d
, 2x + 2

Note :(V = ((x1) = XLX = *** = UKEN
,
L"V = X*

Therefore

Onxn = d
,
(x) = x V + (n- ,

x
*

1 + ..... + 6
, x1 + 20

= (xid + n-XTid ...
- + x

,
xid + Gid)

= dy(x) . id = dy(x)

=> d
,
(x)v = Onxw and 10

=> d(x) = 0

Example

A = 624 B =(002 & (↓(
characteristic polynomial
<(x) = det(xI -A) =

xj)j Y
= ( -1)(x-2)

00 x-2

((x) = (x - 1)(x -2)

=> has eigenvalues 1 and 2

For A : Try p(x) = (x - 1)(x -2) both have deg 1 least power such that da A

p(A) = (A - 1)(A -(1) =

(0)(
= O

Io => p(x) = da(x)
=> da(x) = cy(x)



For B : testing p(x) = (x- 1)(x -2)

p(B) = (B -1)(B -21) =

00I

I I=00 = p(x) = db()

Definition Minimal Multiplicity
The minimal multiplicity mye of an eigenvalue X of a linear map

L: F-> FM Or Of ACMatF) representing L

is the multiplicity of X as a root of dc(x) or da(a)

Note :

d() 26
multiplicity of X as a root of (a) is
algebraic multiplicity

minimal multiplicityalgebraic multiplicity



3. Jordan’s Theorem
Definition Elementary Jordan block

For XCC
,
the elementary Jordan block (of size & with eigenvalue x) is the exe matrix

=

+ I
Definition Jordan Normal Form

The nxn matrix is said to have the Jordan normal form if

J =I
J1

J2

......

O

&O
Jk

where for each i = 1
,

. . . .

.,
K

Ji = Jxi
, li

for some complex numbers Xz
,

...
..XED , integers ......, liEI

Example :

839 j

I 003 j' 5 + ! Ij
O



MULTIPLICITIES AND EIGENVALUES

Theorem Jordan's Theorem

i) V At Mathy) ,
Ap

, JeMat) where P is invertible
,
J has a Jordan normal form and

A = PJp
-

ii) The collection of pairs (11 ,
X

,
)........ (i

,
li) is determined uniquely by the given

matrix A up to reordering these pairs

(iii) Thematrix can chosenso thatthediagonablocksof withsameeigenvaleeith the
sameX do not increase as one goes the diagonal

Example :

j = 58 O x
,

= 5x2 = 3

⑱I O 3 1I 2 3# X: algmust geo mult min mult

j

Xc : 2 I 2

Algebraic multiplicity :

1) X
,
= 5 : 5 appears 4 times in diagonal

=> alq mult = 4

2) x c = 3 : 3 appears 2 times in diagonal
=> alg mult = 2

Geometric Multiplicity
1) X ,

= 5 : There are 2 blocks with diagonal x = 5= geo mult = 2

2) Xz= 3 : There are I blocks with diagonal x =3= geo mult = 1

Note :

· For any upper triangular matrix,
its eigenvalues are its diagonal elements

D = Ea
....... annh

alg multiplicity is the number of times it appears in D

· (i) geo multiplicity of a



General Case :

Let J be a matrix with Jordan Normal Form

J1 O

J =
J21......O

Jk

any given XCC appears on the diagonal of I· Algebraic multiplicity :

Thenumber oftimesa ity as

To see this
,
det of any upper triangular matrix is product of diagonal

(j(x) = #(x :
- x)li

i = 1

=> a
, is the total size of all Jordan blocks of J with the given eigenvalue x

· Geometric multiplicity :

Thenumber of elementary Jordan blocks with same eigenvalare

By defn , gy
= maximal number of linearly independent eigenvectors associated to X.

Each elementary Jordan block has only one eigenvector associated to it

(Figeo mult = 1
, eigenvector = (0)

To generalize to arbitrary J ,
let

X Matpxp Y = Matqxq
n =

(
- =

(
A :=)0) w=



M : = Au =(0)) =p=Igerector
For any XeK ,

Al = X==> ) is an eigenvector corresponding to eigenvalue x of e

#
a) a is an eigenvector of a corresponding to X

I is an eigenvector ofa corresponding to XIb)u = 0

I is an eigenvector ofa corresponding to X

c) 1 = 0

G is an eigenvector of a corresponding to X

Example : Continuing example above

Assume

E is an eigenvector ofI corresponding to eigenvalue x

A is in eigenspace ES=(8) =spl

LEEsj(5) = Sp(42)

WE Ess(3])w =0

so Esg(5) = Sp)( +(1
· Minimal Multiplicity : Themaximalsizeofany elementary Jordan

block with eigenala

To see this observe

(0)
~



Definition Nilpotent

If a matrix A satisfies AM O but AMIO then

A is hilpotent of degree m

Example :

A = 00II

I =

el( I 08 II O

A4 = A = Onxn= At= Onxn

=> nilpotent degree =4

Therefore if Jx
,
e is an elementary Jordan block of size I with eigenvalue X

,
that is

then y jevor,
and this is nil potent of degree

(5x
,
e

- x[e)) = 0xxe = Jo

Now consider the matrixJ having Jordan normal form



Notation: o (5) = Eset of all distinct eigenvalues of 53
=EX1

,

. . . . .

, Xi : XifXj]

For each Xe0(5)
,
denote by ly ,

the largest 1 ; associated to eigenvalue x=xi
Define

p(x) =
- (x-x))x
-O(j)

Theorem

dj(x) = p(x) = - (x -x))x
-O(j)

proof :

Fix anyXEO(J) and consider any Jordan block I Txl y such that xi
= x

Then
p(x) = (x-x)". (x-m)im

Me o(j)

Then
p(5x

,e,
) = (5xi

,
1

- XIe) (5x,e :
-MIe)er

MeO(j)[x]

= Jo Thili
MeO(j)[x]

=O

as li<lx and Jo = 0 => Jo" = 0

=> p(5x
,ei) = 0 &Jordan blocks of J

=> P(j) = 0

so p(x) annhilates J.

showing p(a) is the minimal polynomial
Consider any other polynomial g(x) that divides p(a). Then

q(x) = (x - x)lx
x(0(5)



for somelx-lx where atleast one of the inequalities is strict
Fix any x with1x>ly .

Take any Jordan block Ji = Jxi
,
e,
such that Xi = 1; and li=l,

That is for our fixed X
,

we take Jordan block of maximal size. Then

q(xili) =J Mil
0

MeO(5)(XY

becauselxx=l and Jo O by above argument .

Also each matrix Jxi-Mil , is non-singular as XM .

Thus q(xi ,
li) + 0

=> q(j) = 0
↑

Example : What are the algebraic , geometric and minimal multiplicities of

I IA=
solution:

Alg mult Geo Mult Min Mult

X1 : 5 2 1 2

Xc: 15 I 1 1

Eigenvectors :

1) X: 5 I S= 0 = z=

Hence ==

( % )
6: 1

I S
- 10x +

y
= 0 = x= 02)x2 = 15

: (=
y=

i = (0) :1
Minimal polynomial : (x-5)3(-15)



Notice
A-51 = (000o I

I(A - 51)2 = 10000
While

A - 151 = 0708( O 0 O I
and so

(A-513A-151) = (0000)= I
whereas

(A -51)(A - 151) = 00)(8) II
Definition Spectrum

For any matrix A with complex entries ,
the set of all pairwise distinct eigenvalues of A

is called the spectrum of A and denoted by OA)

u(A) = [x ; Xi +XjVi +j]



4. Constructing Jordan Normal Form
Observe : Consider elementary Jordan block

X

+......5x
,
1

= .... with any eigenvalue XEC·1 :X exl

This exl matrix can be regarded as a linear transformation of co-ordinate vector space
Let &1 , ..... el be standard basis of Cl

5-xi = (8 : g)
Then

· (J -XI)e = 0

· (J - XI)22 = 2

· S =>Txe-XIe : 21 2 ....... (22)(q)0
· (J - XI)23 = 22

· (J -XI)2 = 21- 1

Arrange the basis vectors into a column array called a tower :

I I

It
122
&

j
Example :

-

2

I
o

0

20 IA = 82

2 9x9



9X9 = a basis vectors : 21
,
22, . . . .

., Ea

09 j

010
A - 2 I =Io j

80

00
IO O I

(A - 21)2 = 0
So we get tower

(A -21)22 = 2

(A - 21)23 = 22 es 2
(A -21)24 = 0 22 25 ↳
(A-21)25 = 24 e
(A-21)26 = 25

(A-21)27 = 0

(A-21)28 = 27

(A-21)2q = 0

pyramid of basis of vectors

Ese
More generallyconsider Jordan normal form A of size nxn with blocks of same eigenvaleare

x = x
,

=.... = xk

A = I
5x

,

175 I with 1
, 11271yz .... /k

O Jx
,
In



Each block has its own tower. Put k towers next to each other : pyramid :

l &li

M i Elite In
....

& E Eli EnterIn-1k+ 1

where1
,

+ .. .. + fr - 1
= n - 1x

Note : All basis vectors at level 1 is mapped to 0
,

i

.e.

Ker(5-xIn) -"=Sp( , 21+:
· en-en9) ; spanned by I vectors

More generally for any m =
1, 2, .....

Ker(5-xIn)*="= Sp(first level m vectors from 1 ......m))

Example : In A above

Ker(A-21) = Sp(e1 , 24 ,
Ea ,

293)

Kev(A-2Il = Sp(e , 84 ,
27

,
29

,
32

,
25

,
207)

If we are given an arbitrary Jordan form matrix J with several distinct eigenvalues,
For each X0(5)

,
we can separately consider the pyramid of standard basis of "which

correspond to the Jordan blocks with same eigenvalue X .

For each X
, subspace

Ker(5-xIn)**
"

= Sp(first level m vectors from 1 ...... m of that pyramid of <3)

General Procedure :

1) Evaluate characteristic polynomial cy(x) and all eigenvalues for given matrix AtMath)
2) Determine spectrum (A)

3) Separately for each eigenvalue XtO(A) , compute

Ker(A-XIn)m[" Vm = 1
,

2, ...

Note :

Ker(A-XIn) [Ker(A-XIn) - ...



4) Choose certain basis vectors and collect them all together for all XEO(A) will finally construct
a basis V, ..... In of K such that

Vindex; , Auj = I Sijve
where J= (Jij) = 1

is a matrix of Jordan normal Form

In particular, it O(A) = &X3
,

one eigenvalue has basis V, .... In with pyramid

Ve
,+h

··
en + z

Y l, + 1
... Falkt

Each application of A-XIn will map a basis vector a level down

Hence Vm = 1
,
2

, ... Ker(A-XIn)
*

"= Sp(first level m vectors from 1 ......m))

Note : In case of O(A) = 5x3, suffices to choose

I
,
Vl+11. In top row

Observe Fm =
1, ...

dimker(A-X1) = # of towers

dimker(A-XI)
*

- dimker(A-XIn)m # of basic vectors at m-level .

For matrix A with several distinct eigenvalues ,

1) For each XEOA)
,
find pyramid of linearly independent vectors of n

2) For this X
,
Ker(A-XI)

*
= Sp(first level m vectors from 1 ......m))

3) Collect all rectors in pyramid corresponding to >

4) V
, ..; In forms Jordan basis

Let

= (i) .....
p



Claim:APPTijv : Jis the matrix of linear transformation of A of relativea
Jordan basis V, . . . Un

Let V = EX, . . . un]

A is itself
,
the matrix of linear transformation of A ofD relative to standard basis

a = (j) , .... en = (i)
Let 3 = Se ,

. . .

., enY

Hence P is co-ordinate change matrix , by definition

P = (3

Hence
A =Mg(A) = C3Mr(A)(((3)"= pypt

Observe : For an eigenvalue X and its corresponding
ax = total number of vectors in pyramid
gx

= number of towers of pyramid =

numberofelementary Jordan
blocka

my = size of largest tower = maximal size of elementary Jordan block with eigenvalue x

So

my = leasta such that

dim(Ker(A-XI)Y = algebraic multiplicity



5. Four Examples
Example A

O O O O j

A = j 00 1 O
0 O 010I
0000 0

I- 1 -1100

Finding eigenvalues , calculating characteristic polynomial
->000 8

0 -x010

q(x) = det(A- x1) = 00 -x10 = j
- 1 -11 -x0

0000 -x

2 -x01

=> (- x)0 -x1 = 0
-11 -x

I=> (xP) x i j + 12 = 0 = -x = 0

sog(x) = - x = 0 = x = 0

The spectrum is O(A) = 507 and O has algebraic multiplicity a = 5

Computing Kernels :

For X = 0 : Define

Tx = (A -XI) = A

Ker Tx = KerT? KerTY < .... [
5

---

T1 Tz To

To = A => T = KerA = [ce : Ax = 03 .

0 = 0

Let ic = (c) ·

Then Ai =Al=I d = 0
- a + b + c = 0
0 = 0



Therefore

KerA =(b) : abee
; dimkerA= number of free variable&

=> Istvow : number of elements = dimker A = 3

1

and = = Sp(( , y p,5)
Next

Tz=A = AA =200j
- 1 - 1 10 8I⑧ OOnI

Kev=(b) : ab
,
ede ; dimker number of free variableS

=> 2ndrow : number of elements = dimker A-dimkerA = 1

2

1

and Tz = Sp( , Yp,g, ]

Next

Tj = A= 0 => KerA= c
*

> dim KerA= 5

=> 3rd vow : number of elements = dimker A-dimker A= 1

Therefore we get pyramid
3

2

I

and Tz = Sp[1 , Yq , z
, , 134



Constructing Jordan normal form

Pyramid : for X = 0

3 Us Each Tower : one elementary Jordan block
2 ↓2 size = 1 = height of tower
I VI ↓4

" ↑
**

50 ,
= (0)

50 =(0)
=0

Therefore

I= )
Observe : For an eigenvalue X and its corresponding

ax = total number of vectors in pyramid
gx

= number of towers of pyramid =

numberofelementary Jordan blocka

my = size of largest tower = maximal size of elementary Jordan block with eigenvalue x

Finding matrix P
, starting from top of pyramid , in our case Is

start from choosing any XsEKev A and Is E KerA

= to
j

Note : VstKerA => 2 = Als => Al = /

↓

W

E Vz = (A -XI)]
E is the image of es etc

V

I v,
= (A -XI)b

VI



Hence

==
= At = 1) = = A =7

To construct 14 and Is ,
observe

T = KerA = Sp(V , 14 ,
154= Y

, 14 ,
15 linearly independent and

14 , 15 Ker A

=>
Therefore

4 = (v +4 t) =f
A = PJAP

+



Example B

B = 10 - Ia
1st Step : Calculating eigenvalues

10 - X -4 j
((x) = det)A - XI) = I 5 - x 9

-1 19 - X

= (0 -x)5x - 14) Eax
= (10 - x)((5 -x)(9 -x) - 9) + 4(9 -x + 9)

= (10 - x)(45 - 5x - 9x + x- 9) + 4(18 - x)

= 450 - 50x - 90x + 10% - 90 - 45x + 5/ + 9x -x+ 9x+
=- x + 24x2 - 180x + 432

=- (x24x + 180x - 432)
= - (x - 6)(x - 12)

((x) = 0 => X = 6
,
x = 12

Algebraic multiplicities are

1) x = 6 : aj = 2

) => o(x) = 46
, 123

2) x = 12 :a
, 2

= 7

2nd Step : Finding Kernels and constructing pyramids for each X
1) x = 6 :

T = B - 61 =( I
Finding Kev(B-6ll = (c = (g) : (B-61)e = 8)
We can use row echelon method to solve for a ,

b,



O 1 -100

↳O I I1-19 O I -> I II 3 j I I
=> (ab 0

= (
Hence

kev (B - [6) = (() : a = b
,
c 0) = ((b) : be]

go = dim(KevT) = number of free variables = 1 > 1 tower

=> Istvow : number of elements = dimkerT = I

1

Observe :

a = 2 => number of basis vectors = 2 and hence pyramid has form

pyramid :

2

-
52

,
5 (86

Finding 1 ,
and E2 , computing KerlB-6I)

T = (B-GI)=SI
Reducing to row-echelon form


