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Fields

Definition, Field
A fidd is a gt F together  with bina\(? opevations

addition Mu|tip|ica{iof\,
FxF->F FxlF— [F
(%,p) > o+ («,B) = p

\Sa{isbinj the {ol\ow\nd axioms
Commuhhvitj - Y pel,
oA+p = Pt op = Bk
A.ssocia{wijrj - Yo vel,
at(p4v)= ep)+v  a(p?) = (p)y
Idenjcijr\-, elements: 30,1¢F, 031 guch +hat fov all F,
od+0 =K o 1=«
Trverses: YaelF, Jw¢lF such that
£+ (-¢)=0
VaeF, 3 o'¢F such Hhat
Kol =1
J)is{ﬁbuhmj: Vo g,7¢K, we have
R (p+1) =P+ &Y

R and € ave fields.
xeF = x is a scalar

Fois 4he field of scalavs

xeF = % is a vechy
F'ois +he field of veckors




Linear Algebra

R {50 |,y €RY

€ (G, an) |, xq €€
¢ B whete Fois a field  (abstvact abebva)
Example of éo‘uinj lineay 6551‘em of ezvm{ioﬂs
Considey +he {oﬂoumo 63549.#\ of echaJﬁonS

1) Su-%y + 2xatay =1
2) A4y + 0+ A= 0

We can wite it in ma{ﬁx fovm,

(378 :)(;é )
%4

We now eliminate X u\s'mj second You : 3aussiav\ elimination

i {Jm\—acz + 2%, 42, = - " ; S -ty 42ty =1 ()
(-t + 0+ <0 et |0 FMgt2xbha =l ()
=  From, (x2)
= -, -2
ty= L -ty -2y

@Juwf-nuny inf 4ived (1)

( - )42m by =1
2
—2 = 1 ({3 - - = |-
2 4745 ‘”‘r) 7 07
Therefore the solution is
X< L-X,-X
| ) 3 Y
o= L -X,-2
2Ty




Wﬁ{ina in vectoy form’

X [ —q -X
\ Z S ’]
& [ - -

) | 3 Ly -2y
Xy Xy

0(;‘ OC,'

Note: Properheo of veckors (can be exfended 4o n-dimensions)

) (8)*(5) = (4)

() () =) (3a) = (6 1)

Thevefove anothey uay of wvifin\r} the solutions is

&y Iy =l -

I - -
0(—2 1 /2 + \X—& ( + J.‘r 2
% 0 0 '

Remavks :

1) There ave 2 free variables in +he solution,

number of free vaviables = numbey of vaviables - namber of indepena\on’c
e1ua’cion5

0

2) (4)= (i//i) i> fhe particalar olution 4o the problem
0

9 ()= & -1 | +x] -2 s 4he homogeneons solution



The homo\t)eneoub \sﬁerem of eqnations i

Sory -y + 2ty 2, =0 } 0 o RHS of 1, N
'(X."{'lxz‘f' 0 +d-}‘=0

Geneval 63.5&#1 of linear etvmhoné

We can write a genem( 63.>+ew\ of P linear ealuahon\s i N unknowns as

Ay, 4 - "’Amuﬂ: Ji
: . (*l-l)
API (I,‘ + - + Apnmn:vP
This can also be writfen as
(Au""Am ) (:X.\) <S‘>
A: , b Ot I g: :
Api - Ay, X In
" P
Ax=y xeF  uef (k1.2)

Note: Some 63649.»1 of eq/ua{ions of the Jorm, (¥1.1) maj ot have Solutions.

Fo exanPli,
E d‘ + d.l: O

Solution, 1 obviousir) emer\'}

The solubion set 4o (x12) s

§={xeF Ax= gl




LINEAR COMBINATION AND LINEAR SUBSPACES

The fivst and most cvacial pvopeﬂj is how solution seb § behaves for homogengous
ecv«dionS

Lineay Combination,

Dedimbion Lineay (ombination
n
Given i, ., 4, € Fand &, oy €, Hhen
AY e edy Yy = >4y
i$ called o linaar combination of %, - U

Tn R, the veckov (0,1,0) is @ linear combination of veckos

() - 2(8) + i)

Supspaces

Detinition,  Swbspaces
A subset SSF is called a Subs pace (ov linear éub.s]:ace) of - i
) s
(52) 0€s
(53) Vv, L, Vg €5, a,Y, ttag V€S (closed wndev lineay combinafion)

Here | 0= ¥ -V Vves SF F'= §is a propey Subspace

Examples of Subspaces
1) F'<F and F isa subspace,
2) {0} ¢ F-oand {0} is a subspace
3) Sy={@b)¢F latb=0t < F s a subspace a5
(‘L)(f\) €5, & ath=0
¢td=0



) =>  oa+tpe +ab+ pd =<(a4b) 4 plcta)

=0
= A5) #(5) €S

) §={0,0) e B 42,21Y is nob @ subspace

Since 0=(0,0)¢
5)8,:= {(a,b) € F'| o b0}

Here 0=(0)0) €S,

but not @ wbs,mce, because it 15 not closed wunder linear combination,

FoY cxanyle take

u=(1,-) €s, and  V=(i0€S, bt

wtv=(2,048
Geomévj o \Subs?acc
Ab
Tﬂke \So
+b=0 = =-Q °
a+b=0 = b 45 —
Tﬂke \5:\_: 4\17—
L+a,=]1 =29, =1y \
\ o &,
AN
Take Sy b b
o-b>= (a-b) (a+b) = 0
S O
whion of cuvves ’




Nofa{iom-
*0p s the 0 veckoy with p dimensions

* 0n 15 the 0 veckoy with n dimensions

Consider +he  genevalised finear 6js+ew\,

Ay 4 AL X =
" il ?1 Ax=y | A= (Au Alv\,> »1‘=< aEh)’T‘}
AP' A"m

AP,OI,,-P il M +AF1\‘X'1\'=UP

The set of solutions
$={xeF"| Az=y}

foany Linear sytem Ad= 9 of p equations in, n vaviables is a

of IF
|

4=0p

Proof -
\Supposc 3=_Q?
Then, indeed O, 15 a solation, +o Ax=0, a5
A.an QP
So 0, is in, Solubion set Q€S
FMY'H(CY le{: _\_/h’,\l_q/ be JD[U\{.{O!\\S +0 A%:‘j' )L A\_’_|=O,---, Av_qu

Let oy, . dg €F. Then, we check that
Aoy, + "'+"‘1,!<,): _(_)1,

AGY 442y v) = LAV 4+ kg Ayy = 0,
=AY+t A Vg s solution 4o Ags:_QP



Suppose +hat the set of solubions Aesrn form, 0 swbspace
= 065 is a Solukion
But then AQ <0p,=y9 = y=0

e a () el

The lineay st%m ALrg (s then,

b)) -0

=) EJL. + %320 — defines plane in %y, %, as %70
Ay 4 A3=0 = defines plane in oy 2y a5 24=0

L5 intevsection of P\ones =) form a [ine

Solukion:
Xy =y =Xy

Tn, vectoy {om,

o={(8) 1er] = (1)

This is o vector equation of a line with x; a5 a pavameter
?-) Now considey same .Sjs‘}em With 3enm| 4
| | 0}/ X
<0 | ')(d—;) ___(3') ﬁ{l“".)(z =‘j|
u—} ‘TL 3.1“' 1} el U’-
,SQ'u{iogy

The 3ev\m| solution can be whitten as

&2:32'\1& ) m|=9\'dz = 1|=§)|-\‘}z +3‘-$

Xy Lvee Pammeéev




Nvihn\, solwtion in veckov fovm
e Y -ug £ X - 1
(1;_3 -:( ‘5‘21. Ay 3) = (&332) + 0L3<"> - 6o'u{:ion 4o homojeneous Pw/f
Xq 0 0 '
Ly Shitt fvom orijirl,

Veckor equation of line with & shift from ohigin.
Solition, of forw, : pavticalar solution homogeneous Solukion

Lot Ao_c:a be a lineav st%m of pea!/uahons, n vayiables
Then s solutions S'={aeF" A\'_t,=§ﬂ ave of forw

-S'-'ngibl A"—":gp, A&ozy}

In other fevms, Y, such hat Ay, =y,
s={wtx,| Aw=0}

ie. $=5
Prood : Using mutual entainment | 1) $<S' 2)8'cS
Leb S b +he solubin Seb

1)s¢s’
Alats) = Aud Ay, = 04y =y

2) §'<s
Leb ves be a solutio The, b\»} defintim
Au=y = Alv-1) = Av- Ay,
- y-Y
= 0

—

So V-%, 1S a 6olo\{'|or\, 4o Aw=0
[ |

So define V= Xyt (\_l-a_c_,,)=.x,+w



Not every lineay Sv.h‘en has & solution for all 4. For eXamP(c
AL=Y

wheve 1 X, 0
000 X |

The [ineay ea;ua{ions ave then,
(X.“"l-z{'l&to \13:0 O=1

This is NEVER 4vwe 80  Solufion set i enp‘rj , S0

LINEAR INDEPENDENCE, BASES, DIMENSIONS
Lineay Depeno\ance[ Independence

Definition, Lineay dependence
Vi, L., -V—q,é IFVk 1S (ineaflj Azpendm‘c i 3 (w, ---,O(q,) é qu'\i(O,---,O)} 5.t
0(|!|+ 4'0(4,!% :Q

Othevwise, we Say Vi, Vg, ave |'|Ma'{\7 'molepeno\ank

Definition Linear independence
W, Vg ate lmeaflj indepmdenjc it
0‘,.‘1\“’ +°<$!%=‘Q $ ,(|=0’ '"';0(11"‘0

The idea is lineay de eno\encc means One of these Vectors can be writew, as a
lineay combination, of otheys

For example gince o4 #0,

Remavk: A"U collection, containino 0 is o lineavly independent colleckion
0,V ..y

- 5 a (inu117 ir\olepenAan(: Lb“ec{'im

Vg,
0-140v; +- +qu,=_Q , Where
=1, =0, - ,0q=0




\) J:(!’)Sl’:m with ,\_I=l=_0 5 @ |'memr[7 ino\ependen{
V=0 & oK=0

2) F: byoyea (standard basis)

| 1 0
f_\=<9>, €2 < , oen=l
0 0 ‘

635{80‘4, €l, oy ln 13 hM,m(l? ino\ependan{:

«|

o<.9+---+o<ne_m=<;> 20 & w0, YoLiin

X,

= Iineavfj o\epmdan{:

i) el

K pel | Lugt pyz=<o>

\9aus.sim elimination

= p:Ol =0 OMO oo\u{im
Therefore lincavlj independant



Jpans
Definitim  Span,
Leb GCF" be a non—emm‘\? colleckion of veckors. &= {u ]

The span, of § denoted
\Sp(&)
is the set of all linear combinatim of &
\5[?(6) ={ e FM &=y Ui+ b dnn Fov some oty fF, €8

By convention

6p(¢)= {0}

Remark:
1) We alwavs have JSJP(\S)Q l\:’L

be infinite or finite bub .Sy(&) consists of linear combination of a
Mang terms

it) & ma
4ini4e|jj

Fov any &cF G40,

JP(Q) i5 & of F"
Ta fact, JP(&) is the gmallest subspace of F confainirg b,ie.
S s any subspace with GEJ, then spl@) €$

Proof: Take any collection of veckovs

Y, 5 ¥y, whee  weF, iel1,n]
Let G={w,-- W)y
Then, +the span, i

opl@) = { oyt #ayun | w3eF, wiedl

C(eaﬂg Qé&y(ﬁ) when, =0 VYie [1,n1
We need +o Show SP(G) is closed wndey lineay combinations

Suppose 8, b€ JP(G). Bv definition, of span,



Then,

MG w4 +olntn) + (B4 Brdn)
= Oy +AB) U 44 (Ml 4 ) U
= Ma+pb eSp(Q) as it is a linear combination, and by definition, of span

Ao+ pb

Finaﬂg we need o show Hhet  Sp@) is the smallest Subspace
We have shown +hat §p(@) 1s a subspace and prethy clear that
V; € .SP(Q) Vieﬂl,r\] since  Mi= 0.vy+-+2yi+ 0Vin - OV,
Suppose M is smallest subspace con&a'minj U, \n. We Show that 6y(&)=M
Ny € JP(G) but M is the smallest subs pace Coni:ainivg Wi, - Vs
= m< @)

2) Suppose Vi€M for 1£34n, = ¥y 4 ddpVy €M V(d\,--';o(.\)élFm defn of
=2 &+ FelnVna € 5p(@)  deda of spany Hhspe
= §pla) EM

83 mukual inclusion,

M=3p(6) .

Fov ony subspace ScF™ | we say G spans ¢ if
6P(§)=6
and & is colled +he spanting set for § of U is spanned by &




sp(er, ea) = {wert pealw,pe F1

()L}

Now consider §p(&s,e2,w), w=(1\10)

Since h=€ +ey it is clear that
(Q €, ) = \SP(C\,J)
Further, since &=4-& and &=u-¢,
4) =

tSP(.eJ, €y 4 JP(Q\, @) = \SP(-C—L,%)

3
2)F;, define x=(L,1,1) +hen, €3=Vi-€i-€2 0

58, &, ) = §ple, e2,e9) = F

VR, ws(3), w=(-2) , y=(0
Que\sfim <l) <3) I (I)
a) Is lf [/} lmcav\v] A!,Pendm\£ sjs-}m,

D) s splv, b, )= K

Ansisen

Dk Vit pYy + Dy = (g) = x(i)‘} p('&l) ' T(?) :<g)




Thevefsre we ﬁek

K= -2
3

= —JT
P =

T Hvee pamm&v

Since V40, = &, pF0 = linemr\j dependent

2) oV + BYs 4 m:(%) wheve @ S

iv\homojeueous $ jstm

We Se{:
- 28 +0 =X
—&+Gg+¥=3 X3
Go(—Zp = jau&sim elim'mahm
-Fp +37r= ac+3j
=1 +2 B
3 3 9
=> spans N

p=p (free Pamm&v)

Y=l 4y t 3
505t




Basis

Definition, Basis
Let SSF" be & non-trivial $7 {0} subspace of lF',t
A collection B={.\b,---, uq) €S dovrms a basis i
WY, - g, i linemr\j inde‘)eno‘en’c

1) Jp(m,-", !q) =S

B\‘} AH’I'\I‘IIO'\;
basis of {0y is

Let SSF" be a Jubépace with an  Ondeved basis (l’l, AN
Then YuesS can be unia'uelj witley, in form
sz‘!‘{‘"—d?!@

Proof
B is a basis s0 sp(B)=.
Thus Yues, ety ,x0 €F such that
Uzot Vi, + g Uy
Let B, .- P‘Lé“: such that
U=Bli+4 By
Then,
Uzo Vi, + bty Ny = By ket By
E (-B)Y+ = +@g-p)V=0
But (w,--,¥q) is a basis oo W, Vg 15 lineavlg independent
2 A= by i dg=he
= (o, -, %) is unigue



;0) ﬂ:'\/ Giy-yCn (\S{M\AMA baSiS)

| 0 0
& = 0 , €27 , ooen=|
0 0 ‘

Checked leckure 3 +hak g1, .-, en l'memr\j indepnden’c

o " Ay A
Vi : éﬁ:; o &+ -4 olp €y, = n( 00 5‘)(2_';"'1@!!;)6”:

¥ n

Thus &, .- en is a basis

0
) ‘ 0 0
W Y= ] eadden V[ ]S Latt e Ny 1) = gad
\ ' i

This foyms & basis

| 0
Assume B uit-t Bpin=0 =S p(; ) + pz(['_;)) oot p,\,<?) =0
\ i 0

Thevefore we have 5?‘*"‘ of ecvaahons

l) pl =0 ﬁ pl:o
2) Pltpf- : 0 = Pﬂ.+pz:0 and F’:L:O = plf_o

'\) p‘.(- Byt et B : () = F‘+....+p-,\’:0 and B, pﬂ_‘:o = Pn=0
Thevefove (p, S p,\) = (0, 0) = lir\eavlj indcpmdenf



\Skouinj this 5pans an, foy any

L4
(; )e £
An,

Lets ‘|’Yj to find By, Bq Such that

s 2) =1{ )] o) ()
ESILER

Thevefore we have sjsl—en of e1ua{:ion5 :

') P = & } = B=K,
l)PsJ’P?-

]
sesee &
~

ganssian, elimination
} = a7 o1 ln2

T
LI
-~
o~
+
==
=
S
s
"
R
>

] = B, = dnoy.
,\) Byt Pyt +P'\,—\+pf\, = K, } n n-|
The wolution, is +herefore

A R R TRl

Therefove .Sjshn forms  basis



Steinitz Exd\anjc Lemma
Steinitz exdmnge lemma,
Lk s<F" be a aubcpace. $4 {07 non Hrivial ond lek f_\[;,---,gq,} be a basis.
Then, Vues\foy, 3 jefn-4Y st Swapping U and Yy forms & basis.

(\_A,--',!\-,-.,(A,MJH,---, \qu 15 & basis of § o5 well

Proof: W=u ¥4 4dgyg
As 430, Jjely, 43 guch +hat|a; £0

Let's prove that vy -, V5, 8, Ve, Yy foms o basis

Jince (y;,, J:l,---,qf} forms a basis for J,

K= ¥z V44, v (%)

Since oj$0, we Can white

q,
e L(s-D k) = g djur D G
J ' iz
W i1
Now (_’(:(!M"",\./J-l,ﬂ,.\l\j.‘.(,""%} 6{:in JPM\J J

To show [inea independence, Suppose

..Q: E‘ Pi.\li, + 7“_*
i=l

i1y
for some p; ¢, 1¢i¢q, Ve, i#). Sub.shl:ulinj n from (4)

Q:i By ¢ ,(iipk !K> = i“(pﬁm-})v-, 1 Yatj;
I= iz =

i1 EX
By linear independence of {yj, j=1,--,9}

Bt Ty =0 fov each K+



Jince oj$0 and Ya; =0 = ¥=0 and Bt T =0 fov each K#j
= =0 Yk,
Thas G is l'mem![») inAependan{: o

Moveovey we (an, +ake/6uap any index & wheve it0 in

8 =24y
Jy= !

2
Consider & basis fov R, v and ¥

() () =(l

w=2vi4 02
\Swappinﬁ u and Vi fﬂ ,!9_‘) forms a basis.

Since  w=2y +0v, Swapping W and ¥ does NOT fovm a basis

Dimengions

Every subspace ¢ <F" hos & basis and every basis of § has the Same number of
elemynts

Proof: Providing a method 4o conshuct o basis and show 4his method tevminates after
{inikly many Steps
1) CASE 10 $={07Y 4hen, S has basis @
2) CASE 2: T $+50) they take Vi #0 and +he {o“ouinj Sheps
dfep 1T J=SP(§YJ1)), then w¢ ave done
Else if §46p(fu)) 4hen, 3 28p({)) +hen, 4ake
Vi€ \S\J()“M) (80 vo is 'mdepende& of \_lu)
gtep 2 Tf J=J|;(§y4,\_lz7l) then, % and Yo is a basis of J.
Else it 5 0p(1%,29), +hen, S20p(5u YY) fhen, +ake
s GJ\\SP(?‘.’I,!J) (§0 yy is independent of Vs, %)



&;p_KII{- 6=JP(§MI,---,1,J) then, Wi,V 1S & basis 0of §
and Yy, -, vy ave linealy independent
It not, then, \S#JP(M,\&, -, !’.x)) then, S%Jp(ﬁﬂ,lz,---, Ve]) then take
Yoo € S\Sp(§ 1, 1))
Thew, {!1,11,---, Vi, Yey,) 8 hneav|7 independent
Claim: This aljov'rfhm Hops aftey <n J+ep6
proof (via contvadicion)

Juppose we have made n steps and we havg n hmonrl7 independent vectors

y.l,"".\!-n,

and  consider g:(%) N g_f( %)
0 1

Suppose the procedure does mk stop
App\«j ifcwrajrivd? Steinitz Exckange Lemma Teplaoinj g with v for Sme ]
I)I{ we can apply JHinitz Exchar\oc lewma, n fimes then we wil \9& {hat
Vi, Yo i o basis of "
Tndeed affer the fivgd ayplica’cim, We 3e+
&, > Giota Loy Eayy o A 15 a basis
Tf afttr n steps we get
Yy Va, then, Fzgpu, -, ).
Jo in ouy pvocea\m, neces\SaYily J=JP({‘_’|,---, ‘147)
T) Assame +hat after K steps we  canmet swap Uy, With €4,
At dhis step, we have basis Vi,.., U, &g, -5 En,
Congidey Nyy = &iVid dolg Vet oy Exprt oln a
Tf Vgst Connot be swapped with Ekar,ytn o get o basis, we neceJSahily have

Ky == dn,= 0



$o Mg S M+ ol v éJpﬁ!a---,lﬂ)
But \_IK+‘6\S\JP(f\_/|.---,Mn"1) = !qup(?\.«,...,Mm
This is a contvadiction.
Claim 2 Evevj basis o¢ & has the Same numbes of elements
_;m&_i (by contradickion)
Assume +hat K<d and
Wiy, Wy and N, ..,V ave a basis fov J.
(Tinearly independent)
APplﬂ item’cwdy Seinitz exchanje lemma 4o insevt w,,..,u inbo Y, ... V4
Assume fhat for €<k, we cannot wap ey with either of Y in
Byooo By Vg0 ooy YQ
Then, considey
Dpgy = Uyt ol Wyt Vi o oy

Then, by Steinitz Exckange Lemma, wyy ==&g=0 hence

Begy= sk Fdy by
This (ontvadicts lineay independance of w,--,
Thas u.I.o.g i, ooy By, Yygpoo, M0 0S @ basis of §
bk §=9p(m,,u1) T particlar
Uy =ittt Uy
which contvadicts [inear independence.
Thes k4.

Dedinition,
For ann Sub§pace 6£IF", we define dimension, of S bj
din(S) = 4 (basis of $) Cavdmahjrg




1) F" has standard basis {e1, - en), hence
din(F) = [, -, e =n,
2) Fox €, dim(€) depends on, 4he ground field.
3) (onsider Solution get to homogeneon) finear &35{”\,
X+, +%;=0
claim, that v, =(1,0,-1) and vy=(0,1)~1) spans §.
Cleavly ¥, y,€$ and they ore lincarly independent  ince
o, (1,0,1) 4 g (0,1, 1) =(0,0,0) & (A,0ty,-o, -23) = (0,0,0)
& di=0, o0
Furfhey every solution, has form,
(o), %, -2 =) = oy (1,0,-1) +a,(0,1,1)
o every solution, belongs o Splf v, wh)

Properties of dimensions and basis

Suppose SEFY is a linear subspace of F o dimension q
(0) EVeTlesnan mdependen’c set of vectors iﬂl < mtiié.S can, be extended o o basis

(i) Anj linewi, mo(zpeno(e,& Subset @ has no move +han q elemens
i) A"j Iinemrlj independent  subset Q-CIFJL can be extended 4o a basis of F"
(i) Amj finie dpanm'rj seb for § containg A basis of ¢

Hence no Jubset conkaimn\j fewef than, g elements gpan,

(w) An? lmwlj independent Subset of § con’cammj q elements spans § so it is a

basts of $

mJavl? 4 a set of size q, spans § then it is lmcaﬂj independent and its

A basis

(v) Tf 470, then, $=90Y. Tf g=n, then 8=F"



Proot:
(0) dim(s)=q,. Let w,., ¥y be a basis of &.
Apply  Steinitz Exchange Lewma vecutsively fo wi, ., Ug and basis 1,'..-,_\44,(%0\, to \
!l,!z,"'ly—q/

h : e . :
o at (de) step, you want o exahanje Bpy With Yigyio Yg in basis

Ry 8y Yigy oy g
ince s 4 basis
l_Ak_H=o(‘_M_|+-"'+o¢K(_A_14-olk+|!kH+""+o(¢\lq/
Clain: Not all gy, -, o, are 0
Ml (via con{'vad'\c{iow)
Tndeed i dyyy==clg=0, then, in particulay (due 4o be’mj a basis)
gy = it doly g
which contradicts lineay independence of ..., 4,

|
§o 3 ;€ Lk+,4 ] sach 4hat o0  hence bj Stein itz Exckanoe Lemma,

ey By Ly ooy Gy B Yty s dg

15 & basis.

lipto Tenumbering Vs, withwt loss of generality, axsume j= k4]
Wy MK;MKH:!Hz;'"ny@ 15 4 basts.

7>E&7 o%“&ﬁi?to{be:s Imcarlj independent gubset of . By (0), it could be extended

th oy gy gy, Vg
§ 144,
) This is (0) with =F"
i) Let G ={uy me vexify p(@) =
(&) TH G s linearly independent =2 it is a basis
() T¢ not, F@i,yt) £(0,40) Such that ot n+--tdyu,=(
Nithout loss of genevaliy, assume oy 40



Then, Ut= -l iy = - = ol Uy |
ol o't

Claim: \SP“E!,---,‘A;!!)HS , 14t Substitate
Y00+ -

Tndeed ve§, V=B ut--4 PHQH.{- By Ug
= <F|- Bt ﬁ)!‘_l_ +<pf.|- Ft 5:4)!4:_' — JP(%-‘A', "",.‘M'\"') =

TF {u, wg) s linem[«] independent , done

T ot vepeal steps. Tterating +his procedure, we avrive after <t sheps, we
avrive o $he lineav|7 independent’ ¢

(bas'(s)é-vu.,.--,u, such +hat \Sp({m,---,gﬁ)%
D) d'\r\(é)“}, = Ja basis u, .- Uy,
D IL w, -, Ug is linearl independent
Tncase if Spliw, ugh) 45 Hhen compleke Hhis sed to o basis of S

W, -, (Aq’, M‘j,-H - Bags

But +hen we have a basis with 41529 = conbradicts theovem, thaf all basis
have §ame Aumbey elgments

b) Assume Sp(fw, -, ug¥) =S By (i), @ oubset of W, ug is & basis of$
But by They above this basis has 4, eloments §0 Wi -, g is & bosis
(v) a) 90 = basis ¢ = J:Jp(tf) ={0Y
o) g, let Y- U be a basis of U. By (i), +his set can, be eatended 4o a basis
B=5Nyes Y, Vg, ) o F

But if B s o’mcﬂj Imrger than ¥, Up, then we have a bass of FY with on
e\enuhi

Tadeed F* hay basis

L= j(;), M £'\,=( 8) : d“’\. F'\::y\:
5 1



3) Consider +he 3 vectors

5) (3)- (%)

As shown before these ave not [ineavlj independent.

Let Ax=y be o lincar dystem of p equations in N variables.

Tf iks seb of solutions is not empty then every solution, has form,
Xzt oddy Vg + %o, ok, kg EF

wheve {¥1,--/YgY 16 a basis o1 the colution et of Ax=0 and

o is he particular solution to A1=3

The expression is known, as 15 called the aene-{a[ solution 4o +he s\’s{—m, of
ec}uahons
Considen
X+, +X,=1
1T Xy + Xy A=<|"5 _9:(—‘)
%'33 =0 01 -l 0

Particalar solution,
x,=(1,0,0)
Via Jaué.s}ar\ dimir\a’ciom
W= o, (2,-1,1)
S0 x=o(2h1)4(10,0) = (22+ 1, -ty ,-oty) | Ome de\,vee of fveedom, choice of «,
Another particular is %o = (L0 and K=oz,
w=ot(-2,1,1)
o a=o(-2,01) 4 (=1,1,1) = (-1-2 4+, ot41)



SUM AND DIRECT SUM OF SUBSPACES
We want 4o construct & subspace from subspaces.
Let &, and §, be 2 §ubspaces of £
Problem, §405,

0,p, pef
P B ®,0) +(0,p)= (x,p)

L @o) wef
5= {(®0):-weRY  §,={(0)p): peR)
5405, ={(0)0)] is o Subspace
59092 15 NoT & Subspace

Divect Sums

Definition, Jum of Jubspaces
n
Let 3y, 3q €IF be subspaces. Then, sum

Sybh ok §g = p(00-U8) = Sitblgy | e, yies)

When,
50 (Z“k) ={0}  V1igjy
i
we call +his the divect Sum  denoted
568,005, = @

For any Subspaced g, .-, dg € F
T)Jif\----ﬂ% S 0 Subspace

(ii) \ VI +6$ 5 a Gmb\syace

Proof

i) Spon (anything) i oluays o subspace == Sy++++8g =S p(\s1u----i4) is a
Sbs pace



)10} €y Vk=1,9 =5 10J€ 8N NSy
vy, ....,y{ésln....ndq/ & Va1 Vi=1,-9 , _V-Léd.\}
80 !n-----!«péSj , 32109
§j 15 & Subspace , Yoty ..y, Vit Fol V€6 Vi=1,-9
= Al totolg Vg €6 N NS =D §0---Ng is a sabspace.

D) Let S, F be defined by > ojaxj=0
-
. A
62§|F be defined buj ZpJ X = 0
J=!

Then, $,nJ, 18 defined by ?%t{,;\j:o
%wﬁ@

2) ﬂ:3 and standavd basis vectovs

w(i) o) ol

Let Jj =JP(£‘))I each of these is a line we call an, axis when F=R
Notice +hat JJ(\JK=(.Q\] for 2K
8,03, = Jp(e, €2) is the plane defined by %5=0
3
3) F, Vi=§ple,e0) = 16,0l 4, peF)
V, = 5ples, £5)

V= 560V = Splen ez &) = F
V.ﬁVz= \SP(.e_Z)



Let §1,9, be Jub&paces of IF'L. Then,
di"l(sl"'éz): diﬂ(\&)"’ diﬂ(dz)' din(Jiﬂ \S7>

In particular fov divect sum
dim(5, 85, = dim(sq) + dim(s,)

N 52 A
IF di”\(&()r {

dinV, =2

d_n:{ 2 d-lﬂ(s'l)'-"

T 1% > din(sn8) =0
dnli4)=3 dinl805:)=2
dim(ving) =1 N

Let J, 84,0 ----@67/ be a divect sum of JubJpaces and

yesj\ {0 for j= 1,99
Then, ¥, --,Vq ave linearly independent
Prool
Assume Zo{, Yj= 31,9

"‘J‘U“i"(l VK é(; @ """ M) @\SJ.HG 6\51)”55 :ég\}
K'(U

- o(J!J':_Q
p(\'):O V\,: 1, 4,



. Natrices and Linear Vaps
LINEAR MAPS

Definition,, Lineay Maps
A Map LF = F is called lineat map f
Lw+py) = £ L(8) 4 pL(¥) Vo,peF, Yuyef

Let A be & nxp matvix. Then
Alaw 4 py) = < Au + pAy

LU A i a linear map

A map LIEES € Ticl al lideak map if and onlj if
3A€Ma£PM st L(»)=Aw

* Congidey . 0 :
o fi) o8] o)
0 0 1

and define  A=(L(t) -+ L(ea)) € Mak,
Lets veﬁ-Fy that Yue an, We hm't\e, L(w)= Ay
We have W=dig; +-tolngq = %vgsd- pt

L(#)= L(ierd - datgen) = o Lle) 4t oty Llea) = (L(e), -, L(m)(jw\) = Au

Heace | A= (L&) L(ed) To find A o

that is columas of A ave vectors L(ei), i1~

RemarkK:
We dis%mjuiak bebwees, mottices and linear maps

Fov exam‘ﬂe, the lineay map L1IR2—> IRS', L(u;,otz)=(m.,x2,0) [ Tepvescnfeo‘ b-j

Ma’cvb(
10
A=(0 1)
00



Rematk TH M is a matvin with veal o-efficients, +hen, it defines o lineay Map
Rn -NFKF
=1

but also a linear map

The converse NOT true

Fuvthey any linear mop LR - R has a nafuval extension +o & lineay map LG = ¢f
The matvix just not d\anje, Jus’c usinj the fact R<C.

Convevse  NOT true, for example
A L)L(at.,uz)=ixl s nyve&en{ed by
A=(i 0)
clearly does not may K inbo R
Remavk
Lef M and N be lineat maps with 4he COTYCSPOI\AMj matrices A and B. Then,
a4 pM - QH- pﬂ\)(ﬂ)= oL L(n) +p//\(l_'\) 15 a lineay map wWith

xA+ pB
Recap: Multiplication of matrices
A\ A. A 5" Blz"" B,
A,“ A',\.,_ " An Bip Bop - qu,

AB=Cij where Ci\.}:iAiKBK\] Ae Rnp Bel?xm
K=\ ABG'RNUL

Matrix Mull—iplica{ior\, sabisfies +he -follou'mg pvopevjcies
it AeR™" and 8,CeR™P then,
A(B+c) = AB + B¢
and if ABER™ and CeR™F then,
(A+B)¢ = AC + BC



DT AR and BeR™ and v,5¢R hen,
(vA)(s8) = vs(AB)
mm’ BeR™P and CeR™% 4hen,
(AB)C = A(B)
The definition above is compatible with matvix mattiplication,

A

—

nxp

T AcR

of a matyix nxp bj o vecto Q.LGIF? it you consider & vector as px| matrix
Tn particlar for matrices A and B and & vector & of appepriste gize, we have
(AB) &= A(Bx)

CRGENG)

VgelF': Lx= B =2 m(Lw) = ABx)
= (MoL)(x)= A(Bx)= (AB)x

Com posi{l on, as\SociaHviJﬂ]

Let L:F—s FF and M F—s ﬂ:q’ be 2 linear maps Tepresented bf)
Aemat (F) and  BeMat g:) vespectively.
pxn 4x

Then,
Mol is lineav

vepresented by
BA



IMAGES AND KERNEL; RANK AND NULLITY
ImageJ

We can wse [inear maps to vephvase the problem of evistence and uhiqueness for lineay
vahm of eawahons

To a 535’cem of 9 linear eq/ua{ions in A Wnknowns, Aﬁ=§, We assign the linear map
L Fh 1w)=Ax

Definition, Image and Kernel
Let L be a Lineay map from F 4o fFF', LE—F
Image of L: Im(L)%aém g=L(a_t) {oY Some O_LdFMﬁ
Kernel of L: Ker(L)= $2eF"[L@) =0T  qlso called nall- space

Suppose L is a linear map L: F—rf
+ TmlL) is a Subspace of F
* ker(L) is o subspace of F*
Further when, L s 1epmenéea| b? a matrix A€MatP(IF)

m,
Im(L) is the subspace Spanned by the column of A

Proof
- 0€1(0) = L(0) = 0€In(L)
For #ny w,ueIn(l), then, 3 2ye F“ st w=1(x) and _‘!.=L(g)
At py=ol(2) +pL(y) = L(dx+ pu) €Im(L)
= subspace
- 0eker(L) a5 L(0)=0
Yu veke(s), Va,pelF
L(ozn+py) =oL(n)+ pL(Q:O = bt pre key (L)
= Jubspace



Now vecall from above that columns of A ave L(ey), - - L(ew)
(L(C\) (.n))

Now if veIm(L) 4 and onhj b v=L(w) for som¢ weF™ and we can wrike
n

K= ldd'gJ for some ojelF
‘,’—

Lineavi%g gives
L( 2’_%) = > a;L(gj) € 5p(Lle), -, Llen)

and we conclude

T (k) = gp(L(e), -y L(en)

Notation; Some additional notation, for inage and Kevnel
% Tm(L)={L(a): acF} < Fr
£ Ker(t)= fa:F"| L(a)=

Definition, Rank/Nuliby
Let L be a linear map.
Rank of L, 'rk(l.) is the dimenyion of T (L)
Nullitj of L, all(L)  is the dimension of Kev(L)

Remayk:
Let A be the mabvix that vepreseats [
ﬁJ Lemma, 2.4, In(0=5y(w(umns of A)
§o dimL = maximol namber of linearly independent columns of A
Fack: TKA=vKA". That is magimal number of lineavlj independent columas

= maximal nambev of lineavlj 'mdeyendc»\{ Tous



Rank- NulHj Theotem,
For o, lineay map L: N
= k(L) + aull(L)

Proof: Consider Kexl and Iml
Since KerL i a Subspace, let
B =f_(_kl, 2 LAJ be a basis of ker L = dimker(L)= aull (1) =q
By Lemma 112 () we can, extend basis B fo a basis of F:
{w, -, Ug, Y1) V) (n=q,+f)
We are 9oing $o show that L(¥), ... L(%x) is a basis of In(1)

(1) Linear Independence, :  Let ol L(W) 4+ oty 1) =0

E [(ud-toyVy) =0 & oAU 4 - doly Yy € key(L).
Jince B is a basis for KerlL

R4y Uy = Byt A4 Byl €3 B e o -y g ok ¥y =
Bk {w,- g v) ¥y ] is & basis so4hese veclors ave linea ly independent
=> o, =--Taty =0
= L(w)--Lxe) are linearly independent
() Talz SpLw), - L(vs) : Let we Tn(L). Then, T veF" such +hat
w=)(y)

Since B is & bogis Jor F

V= Pyttt By tig Hol ¥y 4oty ly
Thevefore we have
w=L(0)= L(p w44 Bgiet 14 A
p hE) 4+ 48 Llgg) + ot L(0) 44t Hr)
o L) 44 L(we) €gp(Lle) -, L(e)

"

= In()=gp(L(w), -, Liw))



By () and (D),
L(w), - Llwy) is o basis for Tnl = dimIn()= vkl =¥
Thevefove N=¢+7 = nall (L) + k(L)

Rewinder Let L:F™— F' be o finear Map
L is one-to-one (m\)ec{wc) o L(u)=Lu) = w
- L i onto (Swr\)ec’cwe) of YaeF" 3bef™ st L(b)=a (In(L)= Ff)
- Lis bijective i + 1 both one 4o e and onto

A lineay map LFF" s
1) one b e & ker(L)=£0y & ll(L)= 0
i ok & vk(L)=p
) bijective & all(L)=0 and n=p

Proof:
) KerL={0). Then W L(w)=L(v) & L(u-v)=0
S U-v €kl
& u-v=g
& us=y

Lis 1401, Since L(0)=0
O¢€Kev L. Then, YuekeylL, Lk\:_ol; =10, = 4=0,

fi) 1k(L );r ps dim Tn() & dimIn(1)=p. But +the only subspace of 7 of dimension
p 1 0

W\Ir\.(ﬂt P =) Ir\ L= ﬂ:F

" Bﬂ 'rank—f\vdh’cj theovem,
(onko)p = N\ - I\ul( L =n (one—{o—me)




A .r\c)s{-ew\, of L('J.‘)=3 has & olebion, & néIm(L)

When it has a solubion, it is & KerL=0
Proot:

3 a solution, 3 & L(o&)fg ‘:géInL

A solution, is Whique & We can have %L(%):

(on{'mgogd;uvc We are j°‘“j to prove that KevLf {07 dhen, there is move than, one
Solat 100,

Let weKey L\{0Y | that is L(W)=0 and w40
Led X, be a .Soiu'l:'lor\, = L(g‘\:%
Then Lotu 33X, and Loy 40 = L(%) 4 }_(m)-.—[_(_:yﬂ,\:%

Lgnhogoh{wg, LehL\sho; %ha’c f x 4%, are both solubions to L(ﬂg Lhen,
Kev L 4

Tndeed 2-20#4Q and L(o-2) = Llx)-Lita) =y =0

= x,-%, € kev L\ {0} =

Remark: {:he cotollav above, the wnigneness the nigueness of solution, to L=y depends
on L oq (not on, g

This is not o case for jenera( non- lineay saslen,
Counteveyamples: 1) F R*—>F
(0,0 - (oexl,a,)

Considey eq'uah(sl\. Fla,xp) = () & { o(\-l-.x-,_O 1
12_ =

T4 [al21 then, there is no solution
¢ m:i, then, a mniltue. sofution, (OM\
T4 lalet , then, 3 2 obabions (t{1-a, a)



2) Considey %(x,,ot,_)-' (2041, ;) and Q(Oﬁh\xz)= (1,a)

If a0, a Mniquz Solation, (a_-‘,a)
A

1 a=0, l'f\-{inil:d7 Many Solutions (b,O\, be R

For a homojeneous linear system, of p equations in, n wnknowns,
Ax=0
the number of linearly independent solutions equal n-vkA
Proof:
The number of |inem(c1 independent Solutions = dim, kerA =null A, YKA = dimA.
By rank mallity theorem

TKA 4 nall Azq, = null A=n-rkA b

By wsing the fact thal the # of linearly independent columns of A =4 of linearly indp
j 5 ‘] TOwS o-(-jA,

The numbey of hnear\u] 'mJeyenJen’c Solutions = n-¥

v 15 the namber of Iinea'rlj 'mdepenJenl equa{ions

INVERTIBLE LINEAR MAPS; CHANGE OF BASIS

T4 LF“SF is an inverbible linear map , Tepresented bu an, nxn matrid A, then,
L s lineay

and is Yepresented by A

Tnvertible map L:A—B & 1,84 st
Lel=id, and  Lol<id,
Tavewe mabviy: Tnvere to a mabrz A is a mabriy A Such, that
AN AMA<T,




Proot: We want to show that YuyeF (codoma) and Vo,pefF,
LMawapy) = 2l'(0) 4 pLYy)
L is invertible, in particalor, 1-to-one, enou\jk to Show
L{ths) = L(vhs)
L (antpy)) = wu+ By
Ll ()4 p () = 2L (0)) + BL(C ()= dw 4py =D Lltws) = L (hs)
Let L' be vepresented by & matriy B
1L s vepresented bj BA and Lol'=T | s
I:BA and swtlary T=BA = B A"

A basis $%,- Yn) of F* A linear map
L - f"
is invertible &> L(W) -, L(w) s a basis
In paw{icula( an Man mabix is invertible & its columas provide & basis of FY

p'roo:[: SMP?ose L i invertible.

Lets check L(w), - L() i hMMl«) independent, then H\e-] span, Fr ba lemma 112 hence
H"j form a basis

Assame oL(¥)4 - 4oty L{1a)= O
We Know by Lemma 2.8, L™ is linear. Thew,
0= L0) = L' ()4 4 4y L(W)

oV 4y Yy
But {Vi,-, Va) is a basis = &=y = - Ln=0

= Lw), -, L) are l'memrl', independent

= Jpan FY  (lemma L12)

= form @ basis



Now assume L(v), - L(v) form a basis of F"
Bf) the 'mnk—nuihh] theovem, it 15 enoujk by ghow that KerL={0)
(because then nallL=0 = vkl=n-0=n, "—=7L-\L=IF"’
= {L(w) -, L(\h)‘};yans F
= basis of ' 57 lesma, 1.1 )

A\ A ol
Let [ | ekl The L[:|=0 & (ulw) - L(!n))('» =0
oy o *n,

n,
5><>(,L(1/.l)-|--'--l- oZ,\L<!r\,)=_Q
= o= zdp=0 = key L= {07
Bj rank nuﬂi(7 theotem, vk L=n & Tn L=F"

S Liy b'\jec{ior\ (inve«{'.ble)

) A,=(? OI) = (& -l

Tt s the linear mop 're‘ﬂesen{e& bﬂ
Lyl xg) = (25, 2,)
g:(i) g,_:(o) ¢ 8 e N

ez — -Q_|




EIGENVECTORS AND EIGENVALUES

Notation - d
otation, I IF'\“?F,\ (LIFQ)

Definition,
A linear map LilFAQ
An cigenvector of L is a fon-Zero vectwr Ve F* ach that
Ly =)y  where Aef

Tn this case A is an eijel\\(alue of L

The same definition applicable to matvices
AY = hy
The set of all eigenvalues of L is called the spectvum of L : Spec |
JPecL=(,\£IF|L—>\In is not invertible"

Tndeed
Ly=hy & (L-ATd,)v=0

) A =(3. f\)) NN,

Then, A and ), ave cigenvalues, the covrespondinj tigenvecton ave ‘) and <0>
0 \

i) If M =M, in §) then we have the mabrix AL, which hay Pm}se‘«’ one eijemla‘ue M

P
1

) In R it is possible to have mabrix with no eigenvalues
A )
L0 (B)()
{::: = p=Fb D -|=f

id) Matvix with one eijcnwiuc and one linemr‘] independent eijevwec’cov

) NN D



Remark:
Ei\c’cvwech'rs ae ever unique.
TF ¥ s on etjenvec{or, $is AV, heF
LV =A<V | V40 , AeF, A€F

KCMQ’YK: I Ly, = )\!,
i Lividvw) = My4y)

Lw +Ly,

Ly,= Ay,

—

n
>

<
-+
y

&

Definition, E}jen\rpace
Griven  @n eigmva’ue A of o linear map L [ FT we call

Key(L-AT,) = {veF™ (L- SO
the eigenspace for ei\«jenva\na Aof L

dim Kex(L-NT,) is called the seom{wic mu\hﬂicit’ of A

Note: 0 is not an e‘ijenvzckor, ever\,{l\wgl\ 1 bclonas fo the eijm,.syace,

L:iCP—C Lyla,) = (2, 0)

L, vepresented bt] A,‘=(0| l)
10

a6 < {-3:3;; PP

il SE)
i

_J(--:); = m):(—agx) , 140
K”(L"iIz) = Kev (( 5_ )) i JP( ) a all linear aombinabions ave ei\jenvec{ofs

KeT(L—(i)Iz)= kev((i;. j)) = JP(F‘) = be\onj bo ker(L+AT)

JPB'\.




Let A, .., Ay be distinct eijerwalues of LF
Then, the cowespondinj eigenspaces forn, o divect fum,

Tn particular eigenvectons Vi, Yq for distinct  eigenvalues e lineaxly independent

Proof: Reminder: §y ©--® Sy mean, that v1=1,---,¢,an(%ﬂSz)=f9‘)
For example if =2, we need to check §405,={07
Vesynsyt Lu=hy=hx = (M-2)v-0 = y=p
prood using induckion
Inductive step

Assame that Sy, 5., form a divect sum,

Consider § 0 ( %B“ Jl) X

{-
Vedg=> L=y . Furthermore Ve D Si 1 hence
V=Vt gy, (vedy k=1, 2)

Thevefote we have
L! = Al .\_II + + h‘-l\—l‘"l

VeSg=> Ly=Ny . Furhermore Ve é:h  hence
Ve Vid o gy (e k=1, £1)
Thevefore we have
LY=A M4t Ny Yy
MW Ebyy ) = My = N gt A ¥y
= (A-A)y 4+ o+ (. AV =0
= (A-Mu == (A= My, =0
= =z, 20 Dz

Hence 3,9 form a divect sum, = follows bj induc{‘iw\,



DIAGONALIZABILITY

Definition, Diajona\iZable
A lineat map L: F—F" diagona‘izable over F when,
3 oan invertible nxn mabrix Pem (F) for which

NN

P—'AP s a diq,onal mabvix

Notation,
A%)rzA@¢Am4qu
A

Leb Vi, Va be another basis of F"
€= p Vit
:: . ( b P'">
En= B Vit ot Bin """ Pan
Hence  Afd
(,j ) Ay (Bt 4+ Be) 4 - ety (B 144 g 0)
AP [
)

&oid;igg, ~Dia9ona| Matvix
A e 0

]

Al 44 data)

n

PAP is a;@oml & PAp-

06..:)\'\‘

(0 ‘> ot Jiajonahaable ay an elemenl o} MM(IR)
: AiaJonalizch 8y on element of M, (€)



A linear Map LF'—F" i dia\jonahiauc over F

SUNEEY _INEEN]
as & basis cormshnj of eljem{ec)covs of L

This 1 e«lu]Valer\J( b Jaj'mj that F" has & divect Jum, of eismo?aces of L

&
Sum of all dimensions of the eiom.syaces of L eftua( to n

Proof:
Let A 'reP'feSen{ L. J)ia\«}onaliaable = 1 Panm(fR) Such  that

PR 0
P"AP:(Q az;--9>=p & A=
66-1hn

Remack: Vej, Dej=Ajej Yj= 1,0

Thevefor
T Arg= Albg) = o

= P(AJ' ¢j) = A; Pej
= AlPg)=2i(Pg) => P s an tigenvector of A

Jo Pei, -, Pen are eijen,vec%ors of L.

/

Bub Pej is the j** column, of P by Lemma pohk, Pe, -, Pey is a basis (a5 P is invertible)

Let ¥y, Vy be a basis of F st Lyj= Ay
Consider the matrix P=(¥1,--,Yn). Then, Pgj=Y
Covrcs[)ondir\jb g = P'l!‘j. Then,
_ B } ! }‘| ..... 0
P‘A?g-\)z PIA\-’d - AJP“—’;] =)‘JgJ = P AP :(0 ,\zo>
0622
Pfov'mj the ofhey e1u1u|ences v

Let -~ pg b all the eijerwalues of L and et 61,55 be the Coﬂe\s?ondinj
eisendyaces



;= dim; =‘#B\" T

Choose o basis BJ for & , =1, 9. Now, 14
[Fn= éJj then, 63- 15 & basis of Fr
Je! \'}:| J

q
The'\, = Zd]rl\(xf\i) = in\i = #UJ‘BJ
J=1

J=!

i.e. 4his wmion, Consists of n Iinenlv indefmdenl' veckors = by Lemma pg 4k , F' has o basis
o{ EIJGMCCp

Conversel 1 4 L has a basis of ei ;envecfovs then, we can

voup this basis by correspondin
eijemh to 3e€ the basis of edch Jj J y poncity

e UB has n elements, then this is a basis of eijenvec{'ovs fov 7 thevefore
@-\ J

J [ |

A= (0 l) does not have any 1¢a eije.\,\mluo
10

=) A 15 not d’uajonahzablc

However, over € the matvix A has €

jenvaim 1 6o @ 14122, we have & basis of
etgenvec‘covs of A

= A i Aiajona"lzablz ovey €



CHARACTERISTIC POLYMOMIAL
Definition, Chavacteristic Pok’noma‘

A€Mm(F)

GA) = ded(ATy-A) = X4 (AN 4k o (A) = N4 _Z|cJ-(A)X"J
J‘:

Tf & linear map L is vepresented by L, then, we als call ¢ the chavacteristio Poljnomia[ of L

P'foref{fes of Detevminants

Determinants

A,BeMat (IF)

AXNA

1) det A=0 Hf KA (equally Alsnot invertible)
i) det(AB) = det (A) det(p)

Tn patticalar, det A= 1 A s fwverkible

det A

So det(5'AB)= dek G'det A det B = det A
o) Te A ts upper o lowey h'mnju\ar,

det A= product of d'mjom‘ elements Ay Gy, -, Onn
Tn pavticlar, det(@-Tn) =™ Hene deb(A) = odetA
W) det A'=det A

A= [a (
(ali‘ aaﬁ)

h (M = deb(rf1 0\ [ay a,
hy(H) = (A1 0)- (1 an))

= de’c A- Gy A-4

(7‘";2\ A—a'tlj
= (A-an)(A-ay,) - (-a,) (-a,,)
= X (agt )M Q) ey~ A Ay,

= N- (a“+au)} $debA = N- oA A + det A




Lff{ AAéMa{nm( F). Then each cJ'(A) 5 & po(njnor\ial function, of dejmj in enbries
0

Fuvthevmove ¢ (A = -Z_a =tr(p)

C'\(A)' (— ) dekA
For every i CJ(B-'A B) =GA fov every inverktble matvix B

Proo ck (A) = det(AT,- A) . i .
) 1-e. Similay makrices have Jame
ckA(/\) det B de%()\]:,\,‘A) det B chavackevistic poh,nom'ld
chy () = det(8*(AT, -A)8)

- det (87 (AI,)6-BAB)

= det (M,,- B'AB)

= Ckﬁ"Aé’\)

Geometric Muiliflicih,
Leb L:F*> F" be a linear map, A s an, eiﬂerwalue of L(i-e g !ifi\){%} Such H\a{)
Li=Ay = (L-AT)y=0 TTT

= Ker(L-2L,) #{0]
Definition, Greometic mu!‘ciphc?l‘)
Let Ker(L-AT,) be the eigenspace
The  qeometric multiplicity is dim ker(L- AT,)

Aljebm?c Mulﬂplici{«)
Lt A be the matvix representing L.

(N =dek(ATy-A) s the chavacteristic. polynomial
S o(A)=0 = (M= (A-2) o))

p( Aol FK s called a(.jebm'uo ml’c?ylicilcj



A,=(% §) ) = det(AL,-A)
= det (A'J -1 > = (A'3>z = Alje[mic Mull;ip(ic'.¥7 wrt A,
0 -3 18 2
Howevey dim,kev(A,-\}I,_) = dim kev(g %) =1

as Nﬂk(A\'3IL)=num of i 1 olumns < 1 5eome{vic mul{?plici{7 bj vank nullil7 the,

3100 -0
Az: 0 0 3 1_. ; CA‘(/\)z()\'l) = aljelﬂaio muH?f,ici{? 15 A,
Let LF" F" be a linear map Tepresented by Ae Ma{m(l\:)
'l) The eijen,value) o{ L ave the Tooks ", F o-F ﬂs c,havac[-ﬂis{io poi«jnomia[ CA(A)
The mu\{'upl'uc'.@u, of the voob 1¢ called the of the

eigemm\mc

") R a JWM, eiaevwa[ue A, ks aloebmio muﬂiylial—? io bi\cﬂev than, its

)T A 75 wpper ov lower (:Vianjuiar, then,
GA(/\) = (A-a") Ko X (A=)
(o) There ave ab most n different eigenvalues of [

(V) T L has n distinct eigerwa\ues (ie- ca(A) has diskinct vooks in, F) then, L s
diaﬁonaliiablc

Proof:
i) Let 3eomeh'\o mulﬂflmhj of A be q,
dimker(A,-A)=¢



Let My be the matrix with columns v, ..., W,

Note: Msej = V5 VYj=1,...9
= ¢ /v|J

Claim,: Fivst g, colwmns o M,}‘AMS are Mej ‘jeh,....,,ﬁ
Viel1,41 MoAMGe = M Ay

=M,}'(/\!ﬁ v be|on?s to eigendpace

= )\M\;'y\j
g0

A Ao

Jo My = 0

Mg AM 0 0 X

000 )
The chavacterfitic poljnomia‘ of M;AM s

x-A 0 0
0 X2 0

CM SM)S = dejr(:x.L\ MJ AM,;) = de‘(' O 0 \xé")\

0 0 0
= (x-%)q’P(x)
= alaeb‘ra?c mulﬂphci{—j of N wrt MJ-'AM‘; is 24

But cA(x ¢ (1) = C(at (x—/\) 1) = alaebmo mulbphul\) of A wrt Az
W Am



1) é '7:2 9/4 i} wppey hiangular, ha$ eijev\,\m\ues
0 0 log2 8 -2, 7\'2, Ioj(?-), k; diajona\ enbvies
00 (? It

digtinct = Jiajonahzablc
i) L(ln.iz)=('xz,i\) has chavacteriskic polt,nom'ml
¢, (N=X+1

Gince br(A) =0, det(A)=1 . 3o a5 & linear map from, R o K, ths hay no
eijelwalucf m, R

= ot d‘,ajomlizab\e in, R
4 L161—9 62, eijenvdues are
(¥ 41) = (A-1)(A4)) => A=t oy A=
= diajonalizablc

Follows fvom section, on, diajonahzabﬂi‘q
. oo\1 " 5
IR AN
i) A=<

0
1) upper hian}u‘ar = ei\,erwalucs ae 1,1,0
Al\«)ebm?c mlﬂrhd{ﬂ’ of 155 2.

0
A'jeb'raia Mulhrlici{—? of 00 1
000

Kcv(A—IJ)‘-‘(O 0 1) T Jp(él,éz)

000

COoOpR
oro

and  kex(A) = Sples -&s)
Basis o-P eijev\,vec{'ors £, ¢, 8-¢,

100 If 10
p={0 1T ¢ PAP=(01
0 0-1 00

0
0

)



DETERMINANTS: a reminder

Definition, Determinant
Let A=(a13) be a matrin Ae Malnx(f).
The determinant s defimed to be

A
det A= * Z(") Aoy " Ang(n)

Any- Ban

i,
2%
:
S

Hete

Sp= €008, n) — {1, | 0 s Snvertible

JSn 15 the set of all pemu{'a{'nons (Synmhrio 310!4?)

N(o) = #{(j,K)| 1¢j¢ken, and 6(5)> 0(K)T | number of fnversions of &

Let Aemat, () with columns A, ..., Ay with detA

) Suapping columng changes Sign of det A

W T 2 columas of A ave scalar multiples of each, other, then, det(A) = 0

i) T it olumn of At weplaced by Ay 4 pAc, then, the new makrix has determinant
adet (A)

Properties ave e@maﬂ7 true i "columng’ ave veplaced b9'rousu

a“ a 12 d.3 \
“h Q32 a,;/
- al}azsah



Cofactors

Definikion, Minor and Cofactey
Le[: A= (A\;g) € Mns,@

A:(:| (‘fll_”” WN)
[I a“l c .....- aﬂﬁ

For each 1¢j,kén , wu can, 3& an, (n-0x (1) matvix btj delehv\j the J“’” 100 and
Kth column,

The determinant of such a mabvix i€ denoted by My s Called the (j,k)-minor of A
The (juk)- cofackr of A is defined to be

113
G = (207 My

Laplace Formula for Determinant

Let A=(Ajk) € M(F).
1) ot each fixed all 1€j<n,

n
det (A) ¥ ZTAJKCJK
K=

Z)Fo'{ each fixed all 1€K<n,
n
JC‘HA) = %Ajkcﬂ

Definition, Cofactoy Matrix
Let A€Ma‘:ng'ﬂ
The cofackor makyix of A is

cof(A) = (m):( C c.?- CW) ((j,) enbry i the (j-K)- cofackor of A)

by Cyp, - 1: -Can,
The classical adjoint (or adJujale mattix) of A is the transpose of  cofactor malrix
a6j(W)= f (A)' = (c;y)




Adjuﬂa’te determinant and tnverse
Let A=(Ai)e My (F) . Then,
A-adjA- det(A) T, - ad\j(A)A
In parkicular, i det(A)#0, then, A is invertible ond
A = Od‘)(A)
ale’c(A)

CAYLEY HAMILTON THEOREM

Juppose
i p(x)=o<ﬂx"+o<,‘_‘£‘"+----+o<,ad +

s a polynortial with cefficients i F
Given, A¢ Ma’cng'l\F), define P(A)
P(A) = oA+ oty A 4 oy A+ T
The Cayjlcﬂ Hamilton, Theovem,
Let Acm, (F) Let c, be the chavacteristic polynomial of A. Then,
¢ = 0 ¢ Mat,, (F)

Proof:

B=A-al

)= (1) dek B

By th, above,  BadjfA) = det(8)In

ad; (8) - (B;\')). Evewry Bij 5 a po|7norda| of deam A-l b7 defn of Cofactor

a-| " (1 .. P (1)
BiJ=ZK:_Ob;J-KJ, :p_u(l\ ad;B = )

PM(*) Pm(i
dj(8) = By 4 Byx 4 Byl t o 4By 1 where
B,= (bijo), ----- By = (b-,jx)

de{(B)Im— Badj( g) = B(8,+ ByX 4 oo +B’\—|3"’H)
= (A-scI)( Bt Bx4 -4 Ep\_\lﬁ'l)



= AB, + ABjx+-4 AB,t_‘:LA-I- B, - Bixz- ------B,me
= AB+ (ABy-B)a 4 =By ol (eg 1)

Gl = et u to 4l
det BT, = ¢,(x) => detB)Ty, = (T4 T 4ot (o T4 Ix" (eg2)
Conpavinj wefficenks of (eq1) and (eqy 7)
¢,I = A8, X I
¢,I=AB,-8, X A
GI=AB,-By X A

A-|
(L= A8 "By, XA

C'\' = - B'\_| XA'L

= ¢,I = A8,
¢,A= A B,- AB,
A= K8, Ab,

i
(’n-‘A = A8~ 8.,

C,\' An’: - A'LB,\_‘

AdJinj these up, all termy on, RHS cancel
=) ¢, (A) = ¢, T+ A+ 46 A" =0

(Asinj Cajlej-HawGl’cov\, Theovew, to find inverse of

(304)
A=(112
103

det A=5 =2 A" exists

3x 0 4
1 |-x 2

= (x—i)z(x-S) =24 - (1n 45
1 0 J-x

ANk




Accom\?nj ) Cajle’—Hanﬂh’\, Hheorem,
A’ + FA*- 114+ 5T = Oy,
Multiplying this by A on the et we find that
A+ FA-IT +547 =0, or A _;,(Az- 34 + 111)
0 )
/s 0 35
Linking_some. tdeas
Aem(F) | nkeF
A=A A Ktmes A-T

N N
2 dkh = plA),  pl)= D ap
k=0 K=0

('A(A) = OY\)U\,

0
Z—’(KAK  power sevies : wied to denoke ana\‘ch funchions like ¢
K=(

ad}(A) A= det(?) Lo = Aad\] (A)

We have characteriskic monig pol.,nom'm\

- A n-!

n
By = (") det A I'\)U\,
Jubsjcﬂ:uhnj A by Cag[ej- Hamilton, Theovem,
O G0 = At a8t a A CTUA)T,,,

I\H n n-l A
= () debAT = At a A 4ot A) by sibbracking () et A
=(A" o, A bk ) A
A0 Aty

- —

=M




@ ("')A“lie{(A)Ian F A‘M= M-A

sbA 10 =5 Meag(W) )= () (A 0 A 4 0, )

MINIMAL POLYNOMIAL
Leb LiFY— F" be a lineat map.(vepvesenked h’ AéMalm((f))
Define 12 L% -

7L2= Lo, ‘7‘; Lol = LoloL, --- - L= L0 Loleal K bimes
'repveser\fed A® A
b\7 AQ:AA

Let plx) be the polynom’ml
p(ﬂ £ o(,,\:ft + o(n,‘f"+------+a.1 + aom°
with coefficienks arelF

Define linear tvansformation b, formula : p(L)ilFm'% Fr

p(L) = oyl + gL bk L 4 ot T

Definition, Minimal Pol‘,non?al of A
Let A € mat ().

The  minimal o\t)nor/ﬁa\ of A dA(l) s the monic polvmmid P(:x) of least de’fee
vanishing al /fi e
P =

A= T, . CL\J:(OH)'L= det (a1, - T,)
At the game tme  dg, = (x-1)
Tndeed dy (To) = T, - Ty = Op,
Definition, Minimal Polvnonia| of L
Let L:F = F" be a lineat map

"Il'z\’e\,m‘_'r:\iqnwnl 1?0:“1"0';8.‘) :oé L d, () &5 the moni yolvnomial o) of least degree




From now on, let A€Ma{'n<(ﬂ,:\) vepresent lineat map [-F*—F"

T we Land A Inkefchangeabiuj

The mintmal polynomial of A s waigne and fixed and divides the chavacteristic polynamial
Proot-
dcjdA(1)=m. Let p(i) be the, Poljnom?a[ 5.t ?(A)=O
= dej p(ot)-’ ",
By Euclidean, division,
pla) = q,(m) da(x) + 1) deg < ml
JubsH{uHr\j x=A
p(A) = (A dy(A) +¥(A) => 0,,,=4(M) 0, ,, +x(A)
= Y(A)=Onm
This contradicts assevtion, that dy(x) has the gmallest degree and o\eg(fﬂ deg(al,q) unless
1) =0
= pl) =g(x) 4, ()
= dA(:x)|P(1)

Aniqueness:
Let dp(x) and &, (®) bekh vevh‘-j dedn of minimial polynomial.

= dA(\'L)I 6a(1)

= 4,&) = 5§, &) F\{g
SA(i)ldA(;L\ dAJ- P&A Fé \6011

As dy and &, both Monic, p=1 b'j conpminj co-efficients with X'

= d,q(i) = 54&(1)



Lebt L:FY— F" be & lineat map.(repvesenked b.j A€Ma{,\,(““\:))
Define L5 1% ..

7L F IJL’ L;'-' LzoL = [_oLoLI ..... 'LK-: LK'LL:L,,L,.....,L K times
Tepvesenfed A A
bv} AQSAA

Let p(i) be the polvnom’ml

-
p(8) = ol 4 o, (L 4 ta g ol
with coefficients orelf

Define lineat tvansformation b7 formula: p(L)ifm'ﬁ F

o(L) = L™ 4 oty L oot L 4 o, T

Bﬂ property of finear maps pll) i vepresented by P(A)
Jo bg caﬂlej—l\anﬂ’cov\l CL(L)':O’W\
We also have ministial po\‘]nor\ia\ of L, d,_(at)

Lt L:F " — lFm a linear map

A scalar A€l is an, eijer\yalue of L & d\) =0

Proof :
Assume A be & voot o d,_(i)
4,W=0 = 4&)=(-)pl
deq plx) < deg d, () = p(L)#0
S0 e FM\{0Y such that

deﬁ d, = dej(.x—)\) " deg p(:x)

d,(1)(v)=

1o

= (L—I%)[P(L)! assoda{?vm’
I

= (1-TW)w =lw =0 Dlv=dw DAba e?ger\:uaiu of L



Assame Ve F™\ {0 i an, eijemckov
Jue FY{o} ot Ly=Av
By definition of winimal polynomial, 3, (L) =04 p0
Op, 7 A (W= ([ 4 oy L7 4wl L 4 ot-1d) (v)
___Lny + 0(,\_‘[."-\! $ - 4 JIL\—I 4 dg‘-’
Nobe: v = L(A0) = My = XY = VkeN, v =p%
Thevefove
O™ 4(A) = XY by N YAk AY 4 L)
=(NVid 4 sy Wil 4o A 4 3 d)
= 4,(N)idy = 4,00y
= dL(,\)\Lzo,mb and V£Q
= dL(A):O

) (o)
A=102 I B=1 02 0
002 00 2
Chavacteristic Polx’nomia‘
¢a(@) = det(xI-A) = |21 -1 - R
T ) 0 x2 'Ll;i = (.x—t)z(.x'z)
0 0 -

2

CB(JL) z (u—()(a.-z)
=  hay e}jen\la[ucs 1 and 2
For A: Tnj pla) = (x-1)(-1) both have dejl least powey such that dyle,

p(A)= (A-1)(A-21) =(o | ?)(' ! 4)
0| 0 0!
000/\ 000

[

o OO
oS O O

:) 0 =S p(l)'F dA(i)
0
@ dA(\l) < CA(&)



M l'es{'m P(JL) (1. 1(1. Z)

o(8) = (BI(BZI (o: 4)((
01 0] o
00 1/\ 0

|

|

0
g) — p(1)=d3(1)

SO -
o o~

o oo
S o o

Definition, Minimal M«Itthcah]
The winimal multiplicity mueéN of an ei\’eiwalue A of & linear map
LF"— FY or of A€M4¥nﬁf) 'tepvesen’(ing L
is the mulhplici(r7 of A a5 a voot of 4,(x) oy dA(i)

Noke:
dL<‘,‘) I CL(X)

Mlhlll of A {:{cx)'
a(ltgeb'm:o“‘]mlhyh(?{-; ™t

miningl p\u\’nphc;‘c«] < alge,bvmo mulhfhaif«’




3. Jordan's Theorem

Definition, E|emnfa'nj Jordan, block
for AeC, the elemenkav, Jordan, block (of size £ with eiﬂenva‘m A) i the x4 makyix

= Al 0
g L
3

7 AL 0 A0 01 o0
M o e 0 .1
A 0 A *0

Definition, Jotdan, Normal form
The nxn makvix is Said to have the Tovdan novmal fovw, if

J1 0
o15 [
0 7,
wheve for each 1=1,.....K
Jis JM.!:

for gome complex numbers Mg, ..-A €C, inkc?efs 4,y €N

cot
S Co —
«~ —Oo
o &
- —
O

4 —




Jovdan's Theotem,
i)Y Ae Ma&n%), d0,7¢ Makx{\C) whete P is tnvevtible, T has & Jovdan, novmal fovm, and
A=pTp"

1) The colleckion, of patts (£, 3,), ey (X J) o etevmined | uAtanell bl thel aive
| miv'»x A upbo Veogd;vinj Iﬂ\ese paiYs e ¢ qrely by the Jren,

(ﬁi) The matvix P can, Chosen, $o that the diagonal blocks of T with same eijemlalue A

appear consecutively (one afber another), and' the gizes of these consecutive Volocks with the
same A do 106 increase ay one goes the diagonal

MULTIPLICITIES AND EIGENVALUES

510
J=(050] 0 A=5 X,=3
005
5 5 1 o alg l:mlt geo ;l.uﬂi Min g«dt
03
Ay 2 ( 2

Algebraic Mulhylicﬂ?'-
) Ai=5 5 appeans k times in diaﬂonal = a|7 milt =4
) A,=3. 3 appeans 2 times in Aiagonal = al7 milt=2
Geomebri_ Multiplicity
|)/\,= 5 Theve ave 2 blocks with diajonal A5 = geo malt =2
2,)/\2= 3 Theve ave L blocks with diajonal Azd = geo malt =1
Note:
> for any - upper tiangular Matrix, it eigenvalues ave ity dia?onaf elenents
D=3y, s Gpp]
alg multiplicity is the number of times it appeans in )

..‘|-‘ l i i‘lk 1
( ‘-.,l. 5eo 0 ‘
A



General Case:
Let T be a matvix with Jovdan, Novmal Fovm

J1 0
7o LAl

0 .Tn

> Algelﬂaﬁc mlhp\'scﬂ%-' The number of times any given, A< appears on the Aiajonai of J
is algebraic multiplicity a;

To dee this, det of any uppet {:f'mnju\av matvix 1s product of d'«agona\
K 4;

cj(m)=1—[ (/\;-at)

izl

= @, is the total size of all Jovdan blocks of T with the given, cigenvalue )

> Geometric multiplicity: The number of elemnbw? Jovdan, blocks with game cigemmlue,

I A:geo nult 9,

By defn, 9, = maxinal number of linwh} independent eijer\veckovs awociated to A.

Each e\emv\hv? Jordan, block has only one eijenvectov associated o it

AL 0 oo |0
jeo mult = 1’ eiﬂenvec{ov v=1:
o 0

To genml?ze to avb?hanj J, let
7( € Md{";x? \/=Ma‘:

S&'—'(“:" P;(l
":‘?
flx] 0 w\ip
A= 4 _@=()
0 U4 v)le




'1‘ this 15 an e;jenvec(:ov

B R R
/A:: A_k_) F =

(0 *1) e 1/ AAY
Fov any A€, Aw=Aw = ( ) s an enjemlecfov coﬂeb‘:ov\dm? ko elﬁev\udue Aof o

{

a)u is an eijerwec%mr of x cofrespondinj to A
Vi an eijenvecfov of y coﬂesponah'nj o A
b)u=0
Y s an eigenvector of y comsponah'nj b A
Jv=0

4o an eijuwedm of x cmrrcspondinj to A

Con{fnuinj example above

Assume

—
< lE s

) i an eijerwecl'ov of J comspond?nj ko eijerwa\ue A
510

W is in cigenspace ES;| 05 1 =dp( %)
005

Le¢ 555(5) =JP(‘€1.)

weEJsél3 w=0

S Eg)- JF(<(U) ((gf»

> Minimal Mulf’gl?c.lg The maximal size of any elementavy Jovdan block with eigenvalue A
= | is the minimal ‘Mulhfhcl 2 M) e J

To see this obsevve

.LO)A 0) (.xAD
5@(63' 07”)

b b




Definition, Nilpstent
Tt o matrix Asetisfieo A0 but A4 0 then,

A is nilpotent of dej-ree M,

oSoo
oo o

OO
~———

coOo<Cco

a 0Lo 0\ /0100 0010
AzAA=[0020]||/00210 0001
0001 0001|=(0000
0000/ \0000 0000
s , [0010\ foLoo 00 01
A=AA=l0002)[o020) =[00 00O
0000 0001 00 00
0000/ \000O0 0000
A pa-0. = Ao
NAR, - Unkn

= nilpotent dejvee =4

Therefore i+ J, 4 is an e|zmen€awj Jovdan, block of size L with eijenvahe N, that i

Al 0
A A -.)\ 1
0 P
then, 01 0
DAL= TJyy = ™ ol 1 vous
0 0

and this is nﬂfol'en& of dejm A

X {
(J;\II—AII) = OIXQ 2 JO:»Q

Now consider the matvix J having Jotdan, novmal form,



Nofation,: O'(J)={Jelc of all distinct e?jenvalues 0f 71
={hg, oy A Nt N

For each Aeo(T), denote by 1y, the (ar,esf 1; associated bo ei]envaluc A=A
Define 2
il pla) = H (x-3) "

re0(7)

dy(w) = pl) = [ (-
Ae0(7)

7001

Fix  any A€a(7) and consider ang. Jordan, block ;= Jy.p. such that A=A

Then,
‘ )= e ] o™
hea(s)
Then, £ {
P(J)i,li) = <Jf\i,1'n’ >‘Ili) g H (Ta = e Ili) i

M\

Wl T
,Meo(J)\(,\"}
= 0
&5 Li<A, and JM—O = 7,, =0

= P(\T,\,!.'):O Y Jovdan blocks of
= ?(7)=0

So pla) annhilates J.

Showing p(x) is the mininal polynomial

Consider any 0ther polvnomal 1(1) that d'wde) P() Then,

)\50'(3’)



for gome £, <4, where atleast one of the ?ne:iua|'Hes s stvict

Fix any A with /£ <f Take any Jovdan block Jj= Ty o such that N=£; and £;=(,
That is -fo{ ouy f:Xec? A we take .To?JM, block of maximal size. Then

I I
AR ‘7:),1?; H Jr\i’:ﬁali* 0
Mea(T)I\{MY

f

\ {
because L, <Ay=M; and JO,Z’\: #0 by above avjumen%.
Also each matrix 3—)\1-14;17 18 nor\-d?njulav a5 MF . Thus q/(/\'.,f;)fO

= ¢(3)=0 u
What ate the algelwa?c, 3eomh{c and minimal Mulhplmh’es of
510
A:(O 5 O)
[; 0019
Jolution;
u Alj mult Geo Mult  Min mult
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Ay 15 1 1 1
Eijenued:ofs '

0‘0 1) 7:0

000 =0 ::)

0 010 z 02=0 = 2=0
ol
i
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Hence V= (

D M=ig. [0l 0 “10x +4=0 = x=0
o (11 v
0 00 |07=0=}v=0
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Minima! pol.;nom?al . (:)1—5 (1-15)




Nokice

and §o

vhevea)

(A-51)(A-151)=

(A—EI)Z(A—ISI) £ (

J)e-finijdon, Jpec{'-{u\y\'

For any matrix A :
‘o called Hw.'\fpec t;lf\ll\. oiow‘e:’\jna't:\zz ejmb"“{ (o-)( all paivwise diskinct eijenva‘ues of A

o(A)={M; PYEYY VL#J}




4. Constructing Jordan Normal Form

Observe: Considet elemenhv’ Jordan, block

Al 0
WIS /\ L with any efgerwalue re
0 Al 1l

This x4 mateix can be feﬂawled a3 a linear transformation of co-ordinate vecto ¢pace CI
Let &,-----¢q be standard basis of (fj

(0 1 )

T-AI=[ 0~

o
0

Then
» (T-AT)e =0
'(J—")\I) g.)_ C: gl

= T M g o s a0

r (3-71) = €p
Arrange the basis vectors into a column arfay called a towey:
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4X9 = 4 basis vectors: &1, €5, &g
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A-2T)¢g = €5

A-21 C_q E

(@)

pyramid of basis of veckors

¢ &
€z €5 €t
€ & &1 €4

Mon genetally consider Jovdan, normol form A of size nan with blocks of same eijenvdue
(only ‘one e«gcnvafwe

—‘)-p\,fl 0

with £,2£,24,2 24,




Each block has its own tower. Pub K bowers next to each obher: p,mm?d-'

Lo gy,
t S,
", ;
ot
2 & Lpyy U s
T Y A

wheve £ 444 =n-dy
Hote: All basis vectors at level 1 is mapped 0 0, ic.
kev(J—AI,\)EC'\zJP(f Ql,gm----e,‘_lm'f) ; Spanned 177 L vectovs
More 9enmil.j for any m=1,2, -
Kc*{(J’-/\Iu)né - JP({{m’c level w1 vectors from 1,----.rv\})
In, A above

kev(A-21) = Spl({e,, &y, €4, €q1)

ket(A-21) = splfes, &, 3,89, € €5,¢5])
Tt we are given, an arbitrary Jordan form matvix T with seveval diskinct ei?envalues,

For each Aeo(T), we can Sepetately consider the Wam?d of standard basis of € whick
covrespond to the Jordan blocks with “same eigmvalue A

For each 2, subspace
ker(J- ,\I.‘)né ¢ = p( f{m’c level . veckors from 1, m of that pyranid of At)
Geneval Proceduve:
1) Evaluabe characteviskic polynomial (4 (%) and al eigenvalues for given, matriy AéMak"{Q
2) Determine spectrum 6 (A)
3) Sepevakely for each eigem{aluc Ae6(A), compute
ket(A- ML)  €€” Wm=12,

Noke:
er(A-ATa) € Ken(A-ATn) €



) Chovse. certain, basis veclors and callect them all bogebher for all Ae(A) will finally comsbruck
& basiy ¥, -, Un of € such that

n
V'mdexj, AVJ:Z'-‘TUV';

n
where J= (Jij);,Jﬂ 15 [/} mafri;( 0{' Jofdan, nomal Fo'm,

In particular, if 0(A)={2Y  one eiﬂemlue has basis ¥y, -+, Uy with p’mn?d

]

PV,

!1 !l|+2 yﬂ-l._-l?—
YoVpu o Yaten

Each application of A-ATn will map a basis vector a level down
Heae Ym=1,2,-, ket(A-AT.) € € Jr( {fivst leve) o vechors from 1, m })
Noke: In, case of 0(A)={AY, suffices to choose
Vi, Vg0, Yy, bop vou
Obsevve ¥m=1 ..
dimker(A-AT)= # of touers
dim KCY(A’/\I)ﬂ' diﬂ\kCY(A‘f\In)n: # of bavis vectors at m-level.
For matvix A with several distinct eijenvalues,
1) For each Aed(A), find pyrasid of linearly independent vectors of n
) For thiy A, ker(A-AT) JP(f.fm’c leve « veckors from 1, m t)
3) Gollect all veckors in pymmid Com;pondinj to )

lf) U,y U, Formy Jovdan basiy

Let
Pu) (P_m)
Vi = y ey Ypz|
| PM [ Pan
Pu o Pon
Pag - Pia,



Coin: A= PIP
Jice AV, = Z Y, Jis the mabix of linear tvansformation of A of ¢’ velakive fo

Jordan, basis 4, v,
Leb V={u, v,
A is ibself, the mabvix of linear tvansformalion of A of C" selsbive bo standord basis

(1) - w(;)

Lel— 2:{9’1&}
Hence Pis co-ordinate d\anye malrix, by definition
¢
P=(;

Hont A-M(A)= A, (A)(C) pIp

Observe' For an eigenyalue A and its Corresponding
6= total number of veckors in, P?mmiJ

9= Numbey of towers of pjmmJ = number of e‘emnhw’ Jordan, blocks of

cigenvalue
M, = §ize of lmrje* bower = maximal size of elemenhv’ Jovdan, block with eijerwaluc, A
Jo
My = leagt n uch that
dimlker(A-AT)Y) = algebraic multgliciy




2. kour Examples

EXM\P’ e A

A=

0
0
0
-1
0

O,._\OOO
QRO OO
ooOoPryo
QOO OO

J

and?nj e?jemm‘ues, (.alcu[ahnj chatackexistic pol‘]nom'ml

A000 0
0-A0 10
CA(JL): det(A-0T) = {0 0-AL 0] =Q
1-11-A0
0000-A
2FA0 1
= (-A)|0-a1|=0
11 )
=>(-,\)l(-,\ ’1‘ 1' +1|011‘|> =0 =-A°=(

Jo CA(A):—}f:O = A=0
The Spectrum, s o(A) = {0} and 0 has aijebmic Mnlﬂylidhj a,=5
C()_MPM_H!\\? Ke'{neis:
For A=0: Define
T,= (A-AI)= A
et Ty SKATL € ker T, € oo €C°
L, —
T, T, T,

T=A => T =keA-= {(£eC’: AZ=0].

a L a 0=0

Lt x=[b| Thea Ax=A[b|=0 = |d=0
4 4 d=0
d d -a+btc=0
e e 0=0



Thevefore

@
KeyA= /[ b

© dimker A= number of free variables = 3
athb| - a,beel /
0

e

= 15t Yow: numbey of elements = dim ke A= 3
1 L]
and TJ_: JP{ .‘ll, !4,!5}

Next
2 00000)
T,=A=AA=|-1-110 0
-1-1100
00000
00000,
Q
Key A2= b 2
ajb : a,b,e,deé ] dim kex A= number of free vaviables = 4
e
= 2nd vow: number of elements = dim ke A dimkerA =1
2 [
1 O ]
and T, = \{P{Vl l,‘, 5,_2_}
Next

T, = A3= 0 = Key A3= ¢’ = dim kev A3= 5
3 2
= Jdad vow' number of elemenls = dimkev A - dimkev A= 1
Thevefove we \7e{: pjmmial
J
2 [
1
ﬂnA 1} Jri"l"ltl 51 v]_l ’}7’




cgﬂihﬂgﬂn\, ;Zh;(dgg ngmgl -fm
[yrgm Cfov A0

J E Eacl\, Tower . one elcmen{avj Jordan, block
A

size = [z I\ei}H of towey

81 0 Jo'f(o)
J;),?): 0 % (1)'
Therefore 010
e 00 1 T \
JA: 000 =
0\:| Jo,)
—|0 JOI}

Observe: Fov an djevwahc A and ifs Covves,)ondinj
6,= +otal number of vectors in, p?mmiJ

9= Number of towers of pjmmJ = namber of demnhﬂ, Jordan, blocks of
ujcvwdue

My =gize of Imrjesk bower = maximal size of e|emenhvj Jordan, block with djerwaluc A

Fmdmﬂ matriy P, Jéavhnﬂ f1om, top o{- P‘Jmmd ", our case Y,
Start from, ckoosmy any vseke A and deev/\

Vs =

OO OoO O

Note: !36K¢1A3 = \_I-Z=A!J == Avz = v

Vs €, 15 the image 0f €3 efe
T = (A-AT)y e '

v,

I v=(A-X1)y




Hence

= lleNe]

Y = A.V__3 £

—

ol

To construct Y and Yg, observe

TzkerA=$piu, &, &) =

Tl\m}om

'L<

co!'‘*o

Yy U, Vs linanl-, 'mdeyenden’c and

_\_/[r"_/5é KQ'V A

0 2
0 -
0 v, = |
0 > 10
1 0
00102
10 00-1
10001
0-1000
00010



EXM\p‘c B

(lo -k 0)
b=[1 5 4
-1 19
1 ¢t J@eP_-' Calculajﬁnj eijer\,va‘ue)
0-x - 0
¢(\) = det(A-A1) = | 1 5y ’
-1 1 9-A
= (10- A ‘5 -\ q |
1 -]_ q-)\

= (10-A) ((5-2)( 4-,\) -4) +k(4-)+4)
(10-A) (45-5A-4A + A-9) +4(13-A)
= 450 -50A- 40X +100%-40-45) 45X 49X -X'3 94+ R-
N 252" - 180) 4432 t
= (X -24 N+ 1807 -432)
= -(A-é)z()\-tz)
(AN =0 = =4, r:l2
Aljel:mic mul‘dvlioihes ave
JA=6: a,=2
2) A=120 4,= 1

} => a(A) = {6, 12}

Ind (tep: Find?nj Ketnels and conshucHnj pyramids for each A
i PEYE

T:B-él:(ﬁ f{%)

-3

Ffr\dinj kev (8- 6I) = ééz(?’) - (8-61)2 =0 ;

We can use Tow echelon method 4o solve for a,b,¢



010+0=0

Hence

s wo ] e

9‘= di"\.(k”T): !W\Mbev 0{ -(-me Vaﬁa,b‘ﬁ c 1 ==? l {-ouey
= 1st vow: nambey of elements = dimkev T =1

1O

0b¢evve;

0,=2 = number of basis veclors =2 and hence pjmnial has fovm
-P-f}'mm.'d 1

AN
1 [yl

5
W)

F?no\?nj v, and Y, , Con[m*'mg Ker(B- 6T)

2 2 (12 -2 '36
T=(B-6I)-<—6 6 :x)

-6 6 (8

Reduc?nj to Tow-echelon, form,



